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1 Identification and Significance of the Problem or Opportunity

It is a recognized requirement in the development path of UASs, by the DoD, FAA and
commercial interests, that to reach the next level of autonomy they must be capable of sensing
their environment and reacting as necessary. As defined by the JIPT' in their recently published
draft UAS requirements document, a sense and avoid (SAA) system encompass the following
functions: air-to-air, air-to-ground, ground-to-ground, ground-to-air, and man made hazards.
Current and future plans envision UASs ranging in size from the micro (approximately 6 inches)
to the macro (747 FedEx freighters) while their missions will range from crop dusting to the
extreme in the battlefield to flight time of a few minutes to many days. In a SAA system, many
of these functions can and may overlap in technology implementation or may not be required for
specific missions or platforms. Due to the war and lack of standards, technology development
has not kept up with market need. A SAA system is an enabling technology. There currently
exist only a few technologies that have the capability and maturity to address both the
operational needs and SWAP requirements for a SAA in the short or near term. The JIPT has
estimated their timeline for full implementation and certification out to 2020 as well as RTCA
SC-203 has now estimated that their standards will not be completed until 2020. However, the
fact of the matter is, that the DoD is flying UASs day-in-and-day-out without SAA. This provides
a clear path to gain experience and deploy a SAA system that may not include all JIPT functions
but, will enable new missions, safer missions, lower costs and manpower requirements without
a lengthy certification process. The FAA has indicated, in open forums; 1) that they are open to
type certification for a SAA system for civilian operation, and 2) that they expect the first system

to achieve certification to Tier | - Dragon | TierlI—Scan | Tier ll+/Tier il
set the ?tandard for the e g Eagle Global
industry". y Hawk/Predator
To meet the SWAP, System 1/0 System 2/1 System 5/1
mission (both civilian and .

military), and budgetary Weight <0.5lbs <llbs <8lbs
requirements of UAS Size 0.01 f* 0.03 ff* <0.1f6
manufacturers, MilSys

Technologies is Power <5W <10W <30W
developing a core o R R
collision avoidance (CA) Fov 50 100 220
technology that is Table 1: Potential configurations for various airframes. The
platform centric and can nomenclature of X/Y refers to the number of sensors and the need
be leveraged across for a central track processor.

widely varying platforms

and divergent missions (Table 1). This will be accomplished by both innovative hardware and

algorithm design. MilSys Technologies believes that it is possible in the near term to produce a
system that has FOV of 50 to 220°, weighs <0.5Ibs, and has the functions to perform air-air, air-
ground, and autonomous maneuvering.

The goals of the program were to demonstrate the feasibility of using both COTS hardware and
existing target detector and tracker technology for the purpose of developing a SWAP efficient
collision avoidance system for UASs. The goals were partially meet in that significant work was
completed in both hardware and algorithms, but technical difficulties arose and time ran out on
the present contract, before a full demonstration could be completed.

1.1 Background - SAA

Several different technologies are now being evaluated. They range from microwave, radar, EO
active, EO passive, and even acoustic. The type of technology employed will primarily be a



function of the platform and mission. Each is unique and no one technology will cover all of the
possibilities.

Currently, FAA has been directing

the regulatory development of SAA ‘@, ‘ ,.?,

through the 14 CFR 91:113 Right of A e —l =2
way rules. Which to paraphrase, 4%% >,
states that all pilots are required to g | Proprcesr|
“see and avoid” other aircraft, T L. ,"ff"
whether operating under Instrument ——
Flight Rules (IFR) or Visual Flight ke [ |

Rules (VFR), when conditions
permit. The FAA has empowered
the RTCA and ASTM to develop
the regulatory /standards
framework required so that UAVs
can be granted equal access, as
manned aircraft, to the national air
space (NAS). Since “tosee” is a
human function, a natural limit on the requirements of a SAA system is that it must be “only as
good as” a pilot. As one can imagine, as a technical solution to the problem, the human solution
has it limitations. The literature indicates that a diligent pilot can nominally cover +110°
horizontal and £15° vertical not including obstructions. Poor eyesight, fatigue, distractions and
the environment generally limit the range of contact to 1 to 1.5 miles and 12" seconds of
warning and in most cases is significantly worse".

Figure 1. Schematic of MilSys Technologies Passive
Collision Avoidance System.

1.2 MilSys Technologies Passive Collision Avoidance System (PCAS)

MilSys Technologies has been developing a collision avoidance system for the past three (3)
years. The program is currently funded under an ONR BAA (contract NO0014-07-C-0755). The
primary goals are to design, develop, and certify a passive collision avoidance system (PCAS)
for UASs. The statement of work focuses on designing and developing a man-in-the-loop
(MITL) PCAS based on COTS components for UASs greater than 17’ wingspan or multi-tens of
pounds payload capacity (i.e. Predator). This systematic concept was extend and downsized
for the application to Tier Il and Tier | UASs, such as Raven, SilverFox, ScanEagle etc. By unit
deliveries, these classes are the largest. Additionally, part of the funding was allocated to
advanced developments of future sensors and concepts which could potentially meet JIPT
requirements within the developed PCAS architecture. Overall, the effort is as a multi-year
hardware and software development program culminating in flight certification in the final year.

The technology is based on uncooled LWIR microbolometer sensors (MB) in a staring
configuration as proposed by the Priest’ report of 1998. The MBs will be distributed around the
perimeter of the aircraft with up to 360° of coverage. The total number of sensors could range
between one and ten (10) depending on the mission and platform. To keep cost low, the
architecture is modular and distributed in order that the largest number of platforms and
missions could be accommodated with a minimum of customization (Figure 1).

From discussions with our customers, partners, and government technical officers, we have
developed the following CA requirements. Some of the requirements are qualified by UAS
class:

e Must be capable of providing CA and situation awareness (Air-Air) along the aircraft vertical £15°
and the azimuth according to UAS classification.
o Tier lI+ (Predator/Global Hawk) - up to 360°, but more probably +110°



o Tierll (ScanEagle) - +110°

o Tier | (Raven) - 50°

Must operate 24/7 and be passive.

Sensitivity: Detect a Cessha type object closing at 250knots with >90% probability at limits of
detection (nominal).

Detectability:

o Tier lI+ - 4km, 30s, A30°F, MLS, 90% (nominal)

o Tier Il — 3km

o Tier | —2km

For Tier 1l/1I+ - Must be capable of interfacing with TCAS and ADS-B (future).

First generation system must be MITL and provide the ground operator with the following
information:

o Coordinate locations of objects of interest,
o Object prioritization,
o Thresholds declaration.

Future systems, as funding becomes available will add progressively more functionality to meet
JIPT requirements,

o Airspace situational awareness,

Autonomous maneuver and avoid,

Passive Ranging,

Separation assurance around Class B,C,D (airports etc)

Air-Ground, Ground-Ground, Ground-Air,

o All Weather and man made hazards,

Provide see and avoid capability equal to or better then current FAA requirements for 14CFR Part
91.113 Right of Way Rules

Must be retrofitable and customizable so as to fit into the broadest grouping of both civilian &
military aircraft covering the categories of UASs, rotorcraft, and fixed wing aircraft.

Must comply with MIL_STD_810F for shock, vibration, drop, immersion, and temperature and
MIL-STD-461/462 for EMI. All relevant FAA, military, aerospace specs. as required.

Meet all required Reliability/Serviceability Standards as defined by the DoD and FAA.

o O O O

1.3 Technical Approach

A pilot gauges a collision threat by analyzing its size, rate of change (extent and/or intensity),
and track. Instinctively, these factors are prioritized and set to thresholds, once a threshold is
breached, corrective action is taken.

There are several operating assumptions or scenarios that can be useful in understanding the
operation of aircraft and the requirements of a CA system:

In the NAS there are two (2) types of traffic: cooperative and non-cooperative while in
the battlefield all traffic is assumed to be non-cooperative. Cooperative traffic
broadcasts its position using a transponder (TCAS or ADS-B future). Non-cooperative
traffic does not.

Additionally, according to 14 CFR Part 91, aircraft that operate below 250 knots must
remain below 10,000 feet and any aircraft flying above 10,000 feet must have a
transponder. Therefore in the NAS, fast aircraft only fly >250 knots above 10,000 feet,
allowing a TCAS enabled system to provide the additional detection range (Table 2). In
the battlefield, the condition of lower and slower still applies but, is not universally true.

Above 18,000 feet aircraft (Class A) are required to fly under IFR (instrument flight rules)
and be under ATC (air traffic control). Therefore, theoretically, when operating under
IFR, compliant aircraft will not collide. However, several mid air collisions have taken
place when aircraft are not compliant such as the Tu-154 /DHL mid air collision and the
AIR RAGE Airbus mid air collision.


http://video.google.com/videosearch?q=collision+avoidance&sourceid=navclient-ff&ie=UTF-8&rlz=1B3GGGL_enUS176US215&oe=UTF-8&um=1&sa=N&tab=wv&oi=property_suggestions&resnum=0&ct=property-revision&cd=2#q=mid%20air%20collision&emb=0
http://video.google.com/videosearch?q=collision+avoidance&sourceid=navclient-ff&ie=UTF-8&rlz=1B3GGGL_enUS176US215&oe=UTF-8&um=1&sa=N&tab=wv&oi=property_suggestions&resnum=0&ct=property-revision&cd=2#q=air%20rage&emb=0

The two (2) examples highlighted above demonstrate the need a need for a platform centric CA
technology over and above the existing implementations of TCAS, ADS-B and ATC in Class A
airspace.

MilSys’ approach is to mimic a pilot’s analytical approach with a technological solution. Simply
speaking, the system operates as a hot spot detector and corrective action must be taken when
an object breaches a threshold and remains stationary in the field of view. Proprietary models,
algorithms and methods are being developed to sense, detect, cluster, discriminate and
threshold objects of interest (See Sections 5). Thresholds will be determined by the altitude,
speed, external temperature, atmosphere/weather etc. based on the platform and its mission
profiles. This approach can meet the SAA requirements for both civilian and military aircraft.

The process to avoid collision can

be broken into three (3) distinct Altitude Table 2: Factors effecting collision times
phases; detection and tracking, >17,000 In the NAS, operating in Class A,
path planning, and maneuvering. ATC controlled airspace

Detection and tracking is the period
of time between the initial
breaching of a threshold and the

Low <10,000ft | Lower Airspeeds <250knots
Lower Temperatures Differentials (<A°F)

determination of its track. Path Smaller objects _ _
planning, in a MITL system, is a More atmospheric absorption (>a)
function of the speed of the No TCAS

up/downlink and response of the h >
ground controllers. In a UAS with High >10,000ft
autonomous avoidance guidance

Higher Airspeeds >250knots
Higher Temperature Differentials (>A°F)

path planning would be the time to Less atmqspheric absorption (<o)
determine a de-confliction plan. Larger objects
The time to maneuver is a function TCAS (NAS only)

primarily of the UAS bank angle.

Nominally, the UAS of the Predator Class will take ~11 seconds to maneuver 500ft at a bank
angle of 18° independent of speed. In smaller Tier | UAS the time could be as short as 5
seconds. Independent of the platform, the detection and tracking of objects will be in the range
of 2-5 seconds. All of these times are generally fixed, with the caveat that the UAS could
maneuver faster if it increased its bank angle. The gating factor is the MITL which has been
specified by UAS manufacturers as 15 seconds. From a systems perspective, the goal is to
minimize MITL delays while providing the maximum amount of detection and tracking time. The
object’s slant range to the UAS is a key factor in maximizing the MITL time. Front on
approaches will have a much shorter MITL time than side on. Overall, this sets the detection
time to be 32 seconds out for the larger Tier II+ UASs and as short as 10 seconds for Tier I.

Currently under the statement of work for the BAA, PCAS is a MITL system for Predator Class
UASs. As funding becomes available, and as the regulations, standards and technology
progress’, its MilSys’ intention to integrate additional amounts of autonomy. This path may be
as follows: MITL, autonomous path planning and recommend maneuvering, independent
emergency action, limited autonomy, and full autonomy.

Discussions with the smaller Tier | and Tier Il manufacturers and government program
managers indicated a need and desire to move more quickly to autonomous path planning and
maneuvering. The operational plan would be to be under MITL control for Class B,C,D airspace
on landing, takeoff and when transiting. However, when in Class E airspace during transit and
on station the UAS would operate under full autonomy. The rational being that >99.99% of the
time this airspace is completely void of any traffic.



1.4 Operational

The PCAS architecture has been designed from the ground up to be SWAP and cost efficient,
as well as modular and highly flexible in order to meet the requirements, both new and a retrofit,
of most aircraft (UAS, manned fixed wing and rotorcraft) on the market today. It consists of two
(2) hardware components: sensors and a track processor (TP). To reduce development time,
costs, and program risk, both the sensors and TP will be based on COTS or modified COTS
components.

The sensors will operate as independent self contained units having
hardware/software/firmware for image stabilization (IMU), control, communication, an IR (or
visible as required) camera with lens, and proprietary sense, detect and threshold algorithms.
The algorithms will be based on LMS type filtering (5.1) not optical flow. Optical flow being
determined as to processor intensive for this type of system. The FOV would be tailored
depending on sensor location, UAS class and mission profile, with the front sensor having the
smallest FOV and in the rear the largest. One proposed configuration is ~20° at the nose, 50°
at the wing tips and >100° at the rear. They will be “plug and play” with the TP allowing easy
customization.

Threshold
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Figure 2. Flow diagram of the image through the sensor.

The image captured by the lens and FPA (Figure 2) will be processed by the internal
DSP/FPGA and firmware to correct for internal calibration errors, normalization, dead pixel
removal etc. The DSP/FPGA will then perform an external calibration (as required) and stabilize
the image as required from information provided by the IMU. This processed image will then be
passed through the detector and threshold algorithms. As required, detection reports (Figure 3)
will be produced and communicated with TP. The image will then be discarded.

The central brain (i.e. TP) will be the locus of the system (Figure 1). It will control and

communicate with the sensors,
the autopilot, the operator (pilot Detection Report
- Time Stamp

or ground control) and the ; .

. . - . Target of - Pixel location
aircraft. It will receive detection interest | 2| - LOS angles —>| Track Processor
reports, inputs from TCAS, INS, - Intensity
and other relevant data from the - Size
aircraft or ground control.
Proprietary algorithms (See 5) Figure 3: Example of a detection report.

will translate detection reports

into tracks to be monitored, prioritized and set to thresholds (Figure 4). MITL or autonomous
algorithms will make the appropriate decisions and control the aircraft to avoid any threat
conditions.

A proposed configuration for the Predator, with five (5) sensors and TP, will have a SWAP of
nominally 30Watts, <8Ibs, and <0.1 cubic feet.
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Figure 4: Block diagram of some of the processing algorithms.

2 System Modeling

A system model which will allow the prediction of range performance based on system design
inputs, target geometries, thermal profiles and operating environmental conditions was
developed by Magnolia Optical under the leadership of Dr. Ashok Sood. The model is designed
to answer this type of question: Given a microbolometer with an /1 optics, 25mm diameter,
17um pixel, etc. operating at mid latitude summer (MLS) at what range will it have a 50%
probability of detecting a Cessna type target (4m?, A30°F) The validity of the data will be
compared against NVTherm2002 and NVThermIP, as well as data collected in the field.
Many of the microbolometer manufactures have contributed their actual production line data for
comparison.

2.1 Bolometer sensor model(s) overview

2.1.1 Excel model for single detector pixel performance prediction

This excel model was created to provide accurate estimations of bolometer array performance
parameters, notably NETD and MRTD, for the many types of devices currently in production.
Inputs include basic materials properties for the bolometric material, the absorber layer if used,
the metallizations, and the structure of the pixel (table and leg structure). Electrical resistances,
TCR’s, heat capacitances and thermal conductances are calculated and are used to predict the
time constant, the response and the NETD of the device. Inputs also include the optical system
and the biasing and readout characteristics. Performance results can be seen in Figure 5, and
optics, scene and electronics inputs are shown in Figure 6. The excel sheet is set up to easily
allow inputs for three VOx manufacturers’ and the alpha-silicon manufacturers’ devices (Figure
9). NETD'’s here are calculated for the four major noise sources (Johnson noise, thermal
fluctuation noise, 1/f noise and read noise).

Vn/Resp |type Wn NEP NETD hbe In (RI) NEFD Vin sw NETD sw NETD RG
271E-12 |thermal fluc 2.42E-06 240E-12 26.5| 9.67E-15 1.21E+05 2.42E-06 238 238
S45E-17 [backgd fluc 487E-11 553E-13 [ 54| 1.95E-19 278EHF 4 87E-11 5.4 0o
B39E-12 [johnson 5.71E06 7 9BE-12 B27| 2.28E-14 4. 00E-+H15 5.7T1E06 56.2 55.5
494E-12 |1/ ternparal 4.41E-06 6.05E-12 45.4] 1.76E-14 3.04E+HI5 4. 41E-06 42.9 42.9
8A0E-13 [readout JE0E-07 3.40E-13 8.2] 3.00E-15 4 Z2Z2EHIY FA0E-07 3.6 7.3

Figure 5: Excel performance chart


http://www.magnoliaoptical.com/magnolia/index.html

scene Electronics (readouts, sample rates, noise bandwidths)
T bk 2958 K fuil frame {13 for aSi or (2) for WO 1
larn hi, low {urm) 12 8.0 N rowes/cols 120 for int
WY TA7E-O2 wirem2 rate Hz time sec del f |
W dT 1.82E-04 Wicm2-k frame 30 0.0333 15 |
delta Ts 0.1 K sample
baseline new 1]integrate vox 3.60E+03 2.78E04 1
T subst 298 293 1]integrate asi 3B 0.0317 0.95  |port of fime
T opt 258 293 4| calibration 1.23E-04 2040 34 minutes
T scene 298 2981 4{tc thermal 33.0 0.0076
T devrar 298 298 effective 33.0
rate Hz 580 IMSEC USELC
thermallt ro allowed 850 1.62E-02 18.17 18172 |tframe lim by thermal time
ro array|t ro allowed 3.60E+HI3 2.78E-04 0.25 278 tframe lim by #ows read

optics f eff 3.600E+03 Hz
D opt 10 cm fused 3.158E+01 Hz
A opt 79 cm2 t used 1.58E02  sec 15833.3 usec
eta opt 0.72 15.833 rsec
1 1.00
eratio 0.0001 electronics |
tau opt 1.00 choose 1 1=const!{ 2=constV
foclen 10 cm frame rate 30 0.0333
det IFON 2.00E-04 rad del f 15 0.0B67
diff [FOW 2. 44E-04 rad t frame 16.7 msec
diff spot 24.4 um | bias pulse 1.00E-08 amps load line expression
solid angle 0.211 0.250 0.200 pulse time 1.558E-02 sec beta 0.02
hor FO 11.73 deg pulsesframe 1 fibeta) 1.00
vert POV 5.80 deg | bias power 4 75E-09 amps

W bias total 5 valts

I tei 4

aHin 4.00E-29 norm hooge

Figure 6: Scene, optics and electronics inputs

Shown are the noise voltages, the NEP, the NETD calculated from the heat balance equation,
the current noise, the noise equivalent flux density, the noise voltage calculated from a variety of
expressions found in literature sources"™. Figure 5 shows that near exact NETD agreement
was accomplished from three independent equations and methods (NETDsw, NETDrg, and
NETDhbe)*™. The slightly higher NETD’s from the heat balance equation (NETDhbe) are
probably closer to reality than those predicted purely from equations as the response used in
most equations is an approximation and assumes that the thermal leg conductance is much
greater than the radiative conductance.

2.1.2 Imaging matlab model for aggregate pixel (FPA and sensor) performance
prediction

A model in matlab for the generation of dynamic image sequences was developed to help
assess and characterize sensors and cameras by providing images of bar targets in user-
controlled noise backgrounds. This model is used to simulate dynamic bar target (NETD and
MRTD) tests. The model generated bar target images of user-defined delta temperature and
size are shown at 30Hz as in an actual test with a physical bar target, collimator, display and
human eye. Temporal and spatial noise can be added by the user, the bars can be blurred by
the diffraction PSF or a user-defined Gaussian PSF, and are displayed in real-time. The images
are first constructed at super-resolution (8x to 32x), convolved with a super-resolution PSF then
binned down to the FPA format of interest. Initial results (observer MRTD’s) are much lower at
the lower spatial frequencies than the NETD values and these MRTD plots agree with the
NVThermlIP run outputs. Older MRTD equations tend to overestimate the MRTD as does
NVTherm2002. MRTD(f) will be an important parameter in calculating probabilities of detection,
identification and recognition. For bar target spatial frequencies that approach the detector
spatial frequency (Nyquist), large variation in MRTD is a result of aliasing. Placement of the
bars in exact alignment gives the lowest MRTD; however, in reality this is almost never the
case. As the spatial frequency approaches 1/(2*06det), bar location becomes more important
and large variations in MRTD are seen for just small changes (portion of a detector pixel) in bar
position.



Figure 7: Simulated bar target images from the matlab program

These simulated MRTD’s and MRTD'’s calculated by NVTherm or from NVTherm expressions
will be used to predict the N50 spatial frequency and range and the corresponding identification
and recognition probabilities and ranges in section 2.3.3.

2.1.3 Capacity for sequential vendor model inputs and fair comparison

The model has been adapted to get fast and accurate results for the four manufacturers’
bolometers. The user can switch between the four by simply choosing a number from 1 to 5 in
the “choices” cell shown in Figure 8. Once the sheet is populated by vendor’s specifications or
our best approximations, comparisons of bolometer arrays in identical optics and for identical
operating conditions can be accomplished. Here the model may also be used for performance
optimization since we have knowledge of all the noise sources and the response. Bias voltage,
sample time, operating temperature can all be varied as well as the characteristics of the
bolometer.

bolometer element - electrical
L3 aSi |RVS vox | DRS vox | BAE vox | generic | inuse
Needed for Cand G and tau Rb (ohms) 2.50E+08 2.00E+04| 2.60E+04| 2.60E+04|ohms
[belometer element - geometry TCR 0.0285|  0.024 0.025 0.02 0.02
L3 asi | RVS vox | DRS vox | BAE vox | generic_| in use Rload (ohms) 2.50E+08| 0.00E+00| 0.00E+00| 2.00E+04| 2.60E+04| 2.60E+04|ahrns
D unit call o o " T @ 2 jum absorb full spec 055 055 055 055 .40 0.40
e _—r b ’ e " 2pm absorb inband 09 080 0.85 0.90 0.85
x';wma‘ 1024 540 640 640 320 320 a hooge 4.00E-29 4.00E-29] 4.00E-29| 4.00E-29|m-3
Y format 768 180 180 180 320 320 k1 6.00E-12| 1.00E-13| 1.00E-13| 400E-13| 1.00E-13| 1.00E-13
bolo pix _ |Dim balomaterial 18 15 16 16 24 24[um or 14 noise 2 22|miK
2.40E-17 VOX or aSi 15.5 19 12 135 20 20(urm “hias on bolo 5 233 23 3 2 2|
0.075 0.05 0.05 0.05|um pulse duration 31 67| 2.78E-04| 2.78E-04| 278E04| B.O0EDZ| 6.90E02|msec
absarber length 0 19 16 16 0 0fum pulses/frame 1 1 1 1 1 1
ahsorber width 0 18 15 15 0 0um sample time 31.67| 275E-04| 278E-04| 278E04| 6.90E02| 6.90E-02|msec
absorber thickness 0 0.1 0.1 0.1 0 0lum 12tsarmp|noise bandwidth 15.79( 1 BOE+06| 1.80E+06| 1.80E+06 100 100 |Hz
SiM support thick 0.23 0.23 0.23 04 0.23 0.23|um frame rate 3000 30 30 30 30 30|Hz
additional layer thick| 0 0.5 0.5 0.05 0.5 0.5|um e 1313 1313 1313 533 1333 13.33|msec
e s o u 12 11 i band pass hi 12 11 12 I T THum
rmetal thickness 0.05 0.05 0.05 0.05)um
[fil factor 070 0@  o8s]  oss 061 061 handiac=lloy) B B B 4 B Him
bola legs |SiM leg length 15 17 17 30 18 18]um readout noise 10 10|mk
thickness 1 0.2 05 2 2|um resid spatial noise 10 10 10| mi
width 1.00 175 1.75 1.00 2.20 2.2|um
# of legs 2 2 2 2 2 2
Dirn metal 15 17 17 a0 18 18{um
0.5 2 2 2 0.34 0.34|um
0.03 0.05 0.05 0.05 0.05 0.05|urm
perform c 1TATED9 |/
G 1.02E07 WK
tau response 7.9 10 11.5|msec
METD 29 20 28 S1.5[mi<
METD hbe ZDIVA!L [miK
response 9.TTE+04 WA
response hbe 0.00E+00 VA

Figure 8: bolometer choice section

2.1.4 lterative heat balance equation and comparison to approximations often used

For a more realistic representation and to assure that thermal runaway is not occurring at the
biases applied, the heat balance equation is solved for the baseline conditions (no target), and
the new conditions (target on a pixel). The model iterative solves for these conditions, finds the




bolometer temperatures, calculates resistances and currents, signal to noise, and NETD. The
model supplies a user-defined target temperature. Here it was set at 1K above ambient. The
model calculates the signal and the signal to noise. This is then divided into the delta T value to
get the NETD. These values have corresponded closely to the purely equation derived NETD’s
but show consistently higher NETD’s due to the lower response calculated from the heat
balance equation. This lower response (generally 10-20% lower) is expected to be closer to
reality than the response approximation usually used which does not consider the effects from
radiative loss, only from the leg conductance. For higher leg conductance to radiative
conductance ratios, the responses become equal. The SNR and computed NETD from the heat
balance equation were found to be in close agreement with the theoretical models (equations)
for a large variety of bolometer characteristics.

HEAT BALANCE - haseline
elect in 5.64E-09
P scene 5.20E-09
2.23E-08 3. 418E-08
rad 2 B0E-09

cond leg 3.03E-08 3.418E-08
cond vacuum 1.29E-09

baseline measured values

del Power delta T |l bolo 1.0122E08 armps
-2.TTE-15 0.8573 | balo 2 4E5E volts

Rbolo 2 4397E+HI8 ohms

HEAT BALANCE - new new measured values
elect in 5.64E-09

delta T [ baolo 1.0122E08 amps
P scene £.21E-09 3.25E-15 0.8575  [W holo 2 4695 valts
2 23E-08 F holo new 2 4396E+H18 ohms
rad 2 BOE-09 del Rholo -

cond leg 3.03E-08| 3.419E-08|del phi 1.08E-11  watt
cond vacuum 1.292E-09 % signal 9.66E-06  wolt

Figure 9: Heat balance equations
2.2 Sensor systems model and evaluation criteria

2.2.1 Mathematical basis for model: NETD, NEP, MTF, CTF, and MRTD equations
compiled and derived from literature and from NVTherm models

NETD and NEP derivations: The bolometer NETD consists of contributions from background
temperature fluctuation, bolometer temperature fluctuation, electrical current Johnson noise,
bolometer 1/f noise and readout noise. The NETD in relation to the NEP, response and D-star
is:

4F?2 LV, 4F? . 4F? JAf
r,A[dM /dT],, R, 7,AJ[dM/dT],, 7,AY?[dM/dT],, D"

where F is the optics f/number, and dM/dT is the spectral radiance contrast of the scene
evaluated over the spectral band

NETD = NEP

The NETD components are:

G 4F?

NETD Johnson: NETD. = AKTR (f, — f)f 1/2
i [atcrvbias][ R (f, - f,)f(B)] [Adgibfo dM/dT]
G 4F?
NETD 1/f: NETD,, , =[—1] [k, In(f,/ f,)]"?
e =1 tcr][ L In(f, /1)) [AdeibrodM/dT]
) 2 12 4F* —mi
NETD thermal fluct: NETD, =[4kT?G f, ]"? [ ] for =min[ foy, froal

Ag,7, dM /dT



Beok(Ty +T¢) A, Af T2 [ aF* ] (negligible)

NETD background fluct: NETD, =[
ey Ajept, AM /dT

Note that NETD varies strongly with two commonly varied parameters, the f-number and the
background temperature (and temperature contrast dM/dT). NETD improves with slower optics
as shown in Figure 10a. NETD degrades at cooler background temperatures (tracking with the
spectral radiant contrast) as shown in Figure 10b. This NETD degradation (increase) observing
cool scenes can, in part, be compensated for as bolometer noise may improve and response
(TCR) may increase. L-3 has claimed improved performance for a-Si operating at below
ambient temperatures. They report about a 2x improvement in NETD from 300K to 220K
operation due mostly to an increase in TCR and resistance.
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Figure 10: NETD as a function of f-number (left) and of scene temperature (right)

NETD and MRTD are the commonly used metrics for extended resolved target evaluation;
however, for subpixel targets the NEP and NEI are used.

MTF’s and CTF’s: MTF’s used in the model include the diffraction MTF, the detector spatial
sample MTF, the eye MTF (used in some expressions), and the squeeze or spurious response
MTF. These have been compared to the MTF expressions used in both NVTherm models and
are identical as are the output plots. Shown in Figure 11a are these and some of the additional
MTF types.
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Figure 11: MTF’s vs. spatial frequency

CTF system and CTF eye: The contrast threshold function is related to the MRTD
(CTF=MRTD/(2*Stmp)), where Stmp is the scene temperature contrast. The Stmp default value
in NVTherm is 4C which is the value used in my excel and matlab model runs. The CTF plots in
Figure 11b are from the eye CTF equations given in the NVTherm2002 and NVTherm IP
manuals.

2.2.2 System level analysis (bar target imaging and MRTD prediction)

About a dozen different MRTD expressions were found in the literature dating back to the early
1980’s. Past expressions were not found to be accurate over the entire spatial frequency range.
Some of these have been incorporated into the model and the user may choose which to use.
Plots from these expressions are shown in Figure 12 and Figure 14 along with NVTherm IP run
results and a visual assessment of matlab simulated images shown to the observer at 30 Hz.
Expressions are from the Ratches and Lloyd papers, and the two latest versions of
NVTherm™"™*,

The Lloyd expression which gives a pretty good fit in the mid-range spatial frequencies is:

MRTD = SNRt (4)2 NETD 4 ¢ where SNRt=2.25

151 '#” H, ®°

Adding the second constant term to the expression improves the low frequency accuracy. This
constant corresponds to the eye and display contrast limitations.

MRTD :[{SNRt (i)z NETD

0,.f Y +{MRTD_,}’1"?
151 pu Hf det s} { ed}]

The MRTD NVTherm2002 expression given in the manual is:

CTF,, K..F. 7 B B, )2 482,
MRTD(fS): y {[ ) ye' # — ( w L) 5]2 tzp 1/2
M H¢ (dL/dT)D 7, f(2t.t; /t;) S, G

where Md is the magnification of display, Hf is the combined MTF, dL/dT is the scene spectral
radiant contrast, G is the display gain, Keye=823, (BwBL)"?/SL is the eye filter response
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Substituting for the D-star to get the expression in terms of NETD we get:

CTFR,. . 7° (B,B)"? t 4S?
MRT f — eyerr w—L K _f 1/2 NETD 0 f 2 + tmp~1/2
D( S) MdHf 1[ 4 SL eye(te) det s] G2

CTF 2 48?2
eye {[Zardet (BWBL) ]2 + t?p 1/2
M,H, S, G

The MRTD from NVTherm IP is: MRTD(f,) =

4F?
e, £(dL/dT)Dy (4t /1, )2

where T det =

. : CTF, vzt 482
and in terms of NETD is:  MRTD(f,) :M—:e{[z\/ia%(—f)“z NETD 6,1’ +§}“2}
t

d f L e

This last expression and the Lloyd expression give the best MRTD fits to data (simulated bar
target images) and with the results from NVTherm IP runs. These results are described more
fully in the model validation section. These equations were used in the excel model and images
were generated in an identical matlab version of the model to generate realistic bar targets with
temporal noise. These images were compared to MRTD predictions from this excel model and
to NVTherm outputs. Some representative images and MRTD’s curves are shown in Figure 12
and Figure 14.
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Figure 12: MRTD’s from theory (top blue and yellow), from NVTherm IP runs (black diamonds),
and discerned from matlab image sequences shown at 30Hz (red circles); three images at
1.25*NETD bar target temperature and summed over the eye integration time are shown at bottom
right.

12



2.2.3 MTF, CTF, target temperature contrast and probabilities of detection, recognition
and identification

In addition to the NETD, the MTF and CTF are critical parameters in predicting MRTD. The
main components of the MTF are from optics diffraction, detector sampling and aliasing. The
CTF is determined from the human eye and the display characteristics such as the display
brightness and magnification and the human eye’s response to light level and spatial frequency.
MTF’s and CTF’s are shown in Figure 13 for a typical LWIR /1 bolometer based sensor. The
sheet consists of the target section, the probabilities section, the MRTD sections, and the MTF

section. Other parameters of interest include the D-star, the NEP, the CTF’s and the SNR
where the SNR is calculated for the target specified in the target section and the atmosphere
(radiance and transmittance) specified for the range and altitude.

0 det sample 1786 from IFOY My gquist atmosphere Eye and Display

MLfrad) 9091 D lam 1 km 1.9

N (frad) 1350 23.56 cideq abs coseff 0.005 krr-1 3.78
1.35 379

target

Dhor, Dvert 2 2 meters

radh, radv 2.00 2.00 mradian

IFO%h, IFOWy 028 0.28 mradian MTF diffraction 0.81
tar sub pixels 714 7.14 fiifo MTF opt design 0.99
target dT 45 mk MTF gauss 1.00
dT at range 44 mk MTF atrmos 1.00
tar mean (k) 300.04|bk mean (K) MTF array 1.00
em tar 1|e bk : MTF sig proc 0.59
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Figure 13: Main sheet for sensor performance evaluation
2.3 Model validation

2.3.1 NETD comparisons to literature and other model results

Expressions from a variety of models for the noise and NETD were found in the literature. The
expressions from the various sources were slightly different. Each set of equations had some
shortcomings or approximations that were explored. More accurate expressions for the optical
throughput and for the response were developed. For example, a common expression for the
optical throughput involves the expression 4F* or 4F?+1. An exact expression was found whose
solutions lie between the values from these two expressions.

The scene solid angle is derived from: ¢ _2,_ 2

J1+1/(4F?)
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The model is in agreement with three independent models (expressions and outputs) for noise
and NETD. For the NETD calculations, two responses were used, the heat balance equation
response and the thermal leg conductance response.

The heat balance equation response is: R, = (V,, —V,,)/(P,. —P..)

The leg conductance approximation is: R, = atccf;vb (RRbRRL v
b + L

The approximation overestimates the response by about 10% and underestimates the NETD
also by 10% for these f/1 microbolometer cases.

2.3.2 MTF and MRTD comparisons to NVTherm2002 and NVTherm IP

In general, the MRTD is equal to the NETD*k, / MTF. The constant k, actually has a frequency
dependence that slightly increases the MRTD at the lower spatial frequencies. In NVThermlIP,
the contrast transfer function (CTF) includes this dependency as can be seen in the NVThermIP
data points in Figure 14. The MRTD plot from the new NVThermIP CTF expression agrees well
with the matlab image evaluations. The MRTD plot and the target effective temperature are
used in NVTherm2002 to find the N50 point (target spatial size where the probabilities of
detection /recognition /identification are 50%). NVTherm IP uses the system CTF and the target
temperature contrast to find the N50 point (renamed in NVTherm IP as the V50 point). These
are just the previous NVTherm2002 parameters divided by 2*Stmp, where Stmp is the scene
temperature contrast which is assumed in these simulations to be 4C. The MTF’s currently
used in the model include diffraction, detector shape, display, and eye MTF’s as shown in
Figure 12a. For the MRTD calculation, the NVTherm2002 model used the system MTF which
included the eye MTF and a constant (SNRt). The newer version uses the system CTF and the
system MTF, but without the eye MTF. For this 47mK NETD bolometer, the MRTD is seen to
reach a minimum of about 16mK in the 0.40-0.60 c/mrad spatial frequency range as predicted
by NVTherm IP (red diamonds). This matches the 14mK MRTD discerned from the 30Hz
matlab simulated images (green squares). The difference between the plots modeled in the
excel program and the data plots (NVTherm run outputs and visual MRTD data) occurs because
of differences in the eye CTF curves used and the positive effects of aliasing which improve the
actual MRTD at the higher frequencies. The excel model MRTD’s do not currently provide for
spurious response and for the case where the bars are perfectly aligned with the detector pixels
(0 degree phase case). When considering these factors, the MRTD is actually fairly flat until the
spatial frequency approaches the Nyquist frequency. The model which uses the eye CTF
expression alone overestimates the MRTD at high spatial frequencies.
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Figure 14: MRTD’s from equations (blue and purple), NVTherm IP outputs (red diamonds), matlab
image viewing (green squares), left plot is without Stmp component, right is with full expression

2.3.3 Detection, identification and recognition of small (subtended) objects

Recently we procured copies of NVTherm2002 and NVThermlIP for comparisons with this
model’s system level outputs. The cooled and uncooled detector models in the NV products are
not at all comprehensive; however, their image evaluation models are considered one of the
standards for predictions of MRTD’s and detection and ID probabilities. Many of the MTF and
MRTD equations | used in my model were taken from or derived from equations in the NVTherm
manuals. As such, exact agreement with NV model products for system level parameters is
expected. Much of the work in this model is geared towards providing a physics-based
simulation tool for the accurate approximation of NETD for the many material, optical and
electronic properties that are involved in each of the manufacturers’ products. The model can
then be used as a tool for device geometry and device materials optimization and with the
addition of the image generation and analysis functions will provide an end-to-end uncooled
sensor analysis tool.

The next task was to compile as extensive a database of bolometer pixel characteristics as
possible from the vendors inputs, input these into the model, run performance predictions and
compare these to data if available, and extend the image evaluation section (MTF’s, MRTD’s,
CTF’s) and assure agreement with NVTherm outputs. Accomplishing these tasks, the model
was able to provide validated performance predictions from basic semiconductor materials
inputs all the way through to image and image sequence generation and image evaluation.

Bolometer sensor system performance parameters such as probabilities of target detection,
target identification and target recognition are based on their mathematical components such as
the NETD, the MRTD, and the target thermal contrast and size (extent on the FPA in
cycles/radian).

The NETD is calculated from bolometer material and geometrical characteristics (pixel and leg
geometries, electrical and thermal characteristics) from vendor specifications. The main
parameters are the pixel heat capacity, the leg thermal conductance, the sensing material’s
absorptance, resistance, and TCR. Noise is also a factor and consists of a combination of
Johnson noise, thermal fluctuation noise, background fluctuation noise, and 1/f noise. We also
employ controlled spatial noise (3D noise) in the model to account for row and column noise,
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etc. This model was based on the Night Vision 3D noise model. The final NETD will consist of
the traditional temporal NETD value plus the spatial noise components.

The probabilities and ranges are calculated from the MRTD and the target thermal contrast and
size (cycles on target from Johnson criteria). Also, for longer ranges, we need to add the
atmospheric transmittance into the equation. The model finds the intersection of the MRTD
curve and the target thermal contrast (apparent target contrast) curve on the plot of temperature
(y-axis) vs. spatial frequency (x-axis). MRTD and target contrast are also plotted against range
where we diminish the target contrast by the atmospheric transmittance as a function of range.
The intersection of the two curves gives us a spatial frequency value that is used in the
detection, identification and recognition equations to determine their probabilities. This
calculation is also done in the NVTherm model and has been compared to this model’s findings.
Thus, knowing the target size and thermal contrast, we find solutions of the probability
equations and the range equations for that ideal target on the modeled bolometric sensor.

For subpixel sized targets, the metric to use is the Noise Equivalent Irradiance (NEI) or the
Noise Equivalent Power (NEP). For pixel sized targets the NETD value can be used to
determine detection. For extended targets, the MRTD and target size and contrast are required.
The NEI and NEP expressions use the target subtended area and irradiance, the detector
response and noise, and the detector optical efficiency which is mainly determined by the fill
factor and the diffraction spot size. The NETD is calculated from the bolometer and optics
properties discussed previously. The probabilities based on the MRTD and the target
characteristics are more involved and are open to some interpretation. NVTherm2002 has been
updated and the new NVThermIP uses slightly different expressions, such as the CTF (contrast
threshold function) and introduces the Vs, expressions to replace the formerly used Ns
expressions.

As an example that illustrates the detection, identification and recognition parameters, we
consider a typical uncooled sensor. The format is 640x480 with 17 micron pixels, the optics is
f/1 (10 cm aperture), and the frame rate is 30Hz. The fill factor is 75% and the measured NETD
is 30mK. The FOV is 4.7 x 6.2 degrees and the IFOV is 0.17 mradian. The MRTD curve here
has been generated using a derivation of the NTherm2002 manual expression:

CTF,,
M, H

. 2 (B B )2 t 45?2
{7 ) (L NETDO,, 1T +
f

MRTD= Foump.
4 s, G?

eye

The apparent target temperature is: T, =7, () [(#u — i)’ + 05, 1> and was assumed to be
0.1K.

In this example we do not include the atmospheric transmittance which is close to unity for the
shorter ranges under clear conditions. From figure 12, the intersection of the target with an
apparent target temperature of 100mK and the MRTD curve occurs at a spatial frequency of 3.5
to 4.0 cycles/mradian that correspond to a range of 5.2 to 6.0 kilometers. This spatial frequency
is defined as the cutoff frequency and is the spatial frequency that specifies the 50% probability
of recognition for this sensor and target. The MRTD curves shown are from derivations of
Lloyd’s expression and from NVTherm expressions. The sporadic points are from visual
inspection of images generated in the matlab program.
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Figure 15: MRTD curves (temperature vs. spatial frequency and vs. range) for a 4x4 meter target

The recognition probability for other spatial frequencies can be calculated from the
NVTherm2002 expression:™

_(N/Ng)*™
rec 1+(N / N50)3.76

Much of the probability section of this model is based on NVTherm2002 derivations which
employ Ns, values and traditional Johnson criteria using MRTD’s and apparent target
temperature. The newer version, NVThermIP uses Vs, criteria, the apparent target temperature
contrast, and the contrast theshold function. The probability expressions from NVThermIP
are’™

E
rec,p:M E=151+0.24(N,/V,) and N, =N, (1-0585S,)"*(1-0585S,)"?
1+(V /Vy)

where Nr is the resolved spatial frequency, Srh and Srv are the spurious responses (horizontal and
vertical)

NEI, NETD and MRTD (lab MRTD) remain the critical, most accurate and performance-telling
metrics and the current model now provides accurate predictions of these parameters.
Probabilities of detection, identification, and recognition and the ranges for each are much more
varied due to the specific target shapes and aspects, the field environment (lighting conditions,
vibration, display glare) and background clutter. We can usually assume that sensors with
similar NETD’s and MRTD’s will provide similar target range estimations. The major variability
factors then are the observer, background, atmosphere and target which are captured to some
extent in the range probability equations; however, these rely also on additional empirical values
derived from field observations on specific targets and target sets under specific conditions.

2.4 Observations/conclusions from manufacturer’s data and model results

2.4.1 Relative strengths of noise sources

Initial looks at VOx and alpha-silicon detectors using the model and using data from DRS and
L3 papers indicate that both detectors are limited by 1/f noise at the high bias voltages used to
maximize the response™"™. The a-Si is more dominated by 1/f noise but it is also operated
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typically at 4-5 volts where the VOx is at 2-2.5 volts. The higher resistance of a-Si allows for full
frame time integration while the VOXx is limited to a bias pulse and integrate to inhibit
overheating the bolometer. From DRS data (17 micron pixels at 2.4 volts bias), after 1/f noise,
the next highest noise source for the VOX is temperature fluctuation noise, followed by readout
noise, then Johnson noise. From L3 data (20 micron pixels at 5 volts bias), the second
strongest noise source is Johnson noise, then readout noise, then temperature fluctuation
noise. While the absolute noise values are not given for the DRS bolometer, the ratios from the
chart are 4.6, 3.7, 3.3, 2.8 for 1/f, temp fluctuation, readout, and Johnson. The model predicts
similar ratios even though layer thicknesses and device structure are not known very well. For
the L3 a-Si the values are 26, 12, 11, 6.5 for 1/f, Johnson, readout, and temp fluctuation. This
model predicts similar ratios here also. The ratios are tabulated in Table 3.

Noise type DRS data | RR model Noise type L3 data RR model
1/f 4 4 (2e-13) 1/f 1.64 1.64 (6e-12)
johnson 1.85 2.38 Temp fluct 1.32 1.29

Read 1.69 1.69 Read 1.18 1.18

Temp fluct 1 1 johnson 1 1

Table 3: Relative ratios of noise from data packages and this model’s predictions

2.4.2 1/f noise detail

The level of 1/f noise is determined in the model by the value of the Hooge parameter or the k
factor which at this point are not precisely known for the VOx and a-Si. In the literature a typical
Hooge value for VOx is about 10® cm?®, but depending on processing details this value can vary
greatly. We can extract a Hooge parameter value or k factor from the data if the level of 1/f
noise is given. In the above table the 1/f noise was modeled using the k factor. Agreement with
data was found for k’s of 2e-13 for VOx, and 6e-12 for a-silicon. This indicates that the 1/f noise
from the alpha-silicon is about /60 or about 8 times higher; however this does not seriously
degrade the a-Si NETD since the alpha-silicon noise bandwidth is much smaller and it is
operated at about twice the bias voltage. Consequently 1/f noise based NETD limits look to be
very similar. 1/f noise will also depend on the layer thickness (volume of material) so this must
also be known for each type of detector to be able to predict 1/f noise.

2.4.3 Response times and sensitivity comparisons

It appears from the limited data seen so far that sensitivity (NETD) is comparable for the VOx
and a-Si based bolometers. It may be that the higher voltage, TCR and response available to
the a-Si compensates for a higher level of 1/f noise. As far as response times, the VOx may be
inherently slower due to the requirement for an absorbing layer and an underlying substrate.
The alpha-silicon can be grown on a sacrificial substrate like a polymer, and doesn’t require an
absorber so a lower heat capacity can be achieved. For the smaller pixel sizes being
developed, the model shows that the leg conductance is becoming dominated by the
metallization, so thinning and lengthening of the legs may not achieve as much of an
improvement in conductance as expected. None of these conclusions should be considered set
in stone though, as little is known of the individual manufacturers’ specific capabilities in
controlling these device parameters. The Table 4 below shows model results for pixels of VOx
and a-Si for identical C and G values (first 3 columns), then for reduced C and G (last two
columns). The NETD predicted for a typical VOx at 2.5V is 40mK and is 1/f noise limited. The
alpha-silicon with the higher 1/f k value has an NETD of over 100mK. Reducing the 1/f noise k
value to that used for the VOXx gives a total NETD for the a-Si bolometer at 5V (column 3) of
57mK, this time limited by the Johnson noise. A twofold reduction in size (C and G) gives total
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a-Si NETD’s of 556mK and 30mK. From these initial simulations it appears that as the data has
shown, the performance of these two detectors will be similar and final performance will
probably be determined by manufacturing subtleties and readout electronics. Spatial noise has
not been mentioned and this may also become a factor in overall performance. Nonuniformity
correction (calibration) must be sufficient to limit spatial NETD to a level significantly below the
temporal NETD.

NETD's for 20 micren pixel, f1, 30Hz, 12ms | 5C, 5G | 5C, 5G
noise YOX asi asi asi asi
tf 18 17 17 12 12
john 10 49 49 25 25
14 34 94 24 47 12
far k = 4 00E-13 E.O0E-12 4 00E-13| E.00E-12 4 00E-13
total 40 107 a7 a5 30

Table 4: NETD’s predicted from model for like-detectors of VOx and a-Si for different levels of 1/f
noise.

2.5 Simulation of microbolometer sensors for aerial collision avoidance

In these examples we look at a wide angle FOV (from 20 to 40 degrees) with /1 optics for small
aerial object detection. The frame rate is 30Hz, the spectral band is 8-12 microns, the baseline
NETD is 40mK, and the optical efficiency is 70%. The intended target is at altitudes from 100
feet to 10,000 feet and the sensor target path is horizontal (for sky radiance and atmospheric
path transmittance calculations). Atmospheric transmittance and radiance data from many
MODTRAN runs over the 8-12 micron spectral range were compiled and a model in excel was
developed from these data tables™".(18) Horizontal path sky radiances were compiled for
these altitudes and were compared to blackbody curve outputs to assign an effective blackbody
temperature to the path inband radiance values from MODTRAN. These effective
temperatures vs. altitude are shown in Figure 16a which were derived from MODTRAN model
runs. Note that the actual temperatures at the altitudes are higher than the effective
temperature. The effective temperature takes into account the path emittance from the sensor
to space which is less than unity. For example, the MLS sea level temperature is 25C or 77F or
298K, but the horizontal path radiance due to absorption in the 8-12 micron band is only 80% of
the ideal spectral sum radiance of a perfect 298K blackbody radiator. The 80% emissivity 298K
radiator is equivalent to a 100% emissivity 285K radiator. This 285K is the effective
temperature used in the model to calculate inband path radiance. From MODTRAN runs at
each altitude we get the effective temperatures that are used in the excel model to approximate
horizontal path radiances. For the path transmittances, MODTRAN runs at various altitudes
and path distances were used to find absorption coefficients as functions of altitude and path
length. These are shown in. These expressions are used to calculate the SNR’s for targets of
defined areas and temperatures, altitudes and ranges.
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Figure 16: Effective temperatures of horizontal path vs. altitude (left) and 8-12um transmittances
vs. range for altitudes from sea level to 10km (right)
Sensors and scenarios were investigated to predict SNR’s from aircraft at various temperatures
and areas, and at various ranges and altitudes. A few of the common bolometer camera FPA
formats and FOV’s were simulated and the plots in Figure 17 were generated from these excel
model runs.

For SNR calculations for subpixel targets, we use the NEP or the V,qs./ Response ratio. The
SNR is:

SNR = [Ptar - Pscnobs ]/ NEP

where Ptar is the target energy on the sensor optics (watts) and Pscnobs is the contribution from the path
radiance that is obscured by the target.

The response is given as:
.V, RR,

— ter

¢ G (R+R)?

The cases modeled were:

Case#1: 40 deg FOV, 0.5” optics, 28um 320x240 FPA, f/1, target deltaT = 30F, target area =
4m?, for altitudes of 100ft. to 20Kkft.

Case#2: 20 deg FOV, 0.5” optics, 28um 160x120 FPA, f/1, target deltaT = 5F, 15F and 30F,
target area = 2m?, for 100ft.

Case#3: 25 deg FOV, 1.0” optics, 17um 640x480 FPA, /1, target deltaT = 130F, target area =
1m?, for 10, 20 and 30kft.

These SNR plots are as accurate as the known values for the camera NETD and the optical
efficiency. Reported values for f/1 NETD’s range are in the 20mK to 50mK region for most of
these uncooled sensors. The general trend is a decrease in NETD with pixel size. The NETD
was taken to be 40mK for all cases and the optical efficiency (which includes the optics
transmittance) was 70%. If the actual NETD and optical efficiency are different, the plots will
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move slightly up or down linearly with the NETD and optical efficiency ratios. That is, if the
optical efficiency is 60%, the SNR plot should be lowered by 0.6/0.7.

The signal was calculated as the difference in level (voltage) of the pixel containing the target to
a nearby pixel that is observing only sky radiance. The accuracy was checked by adding a
285K target in the pixel IFOV (target being the same temperature as the effective sky
temperature). The signal here was seen to be zero. As an additional check, the target was
made to fill the IFOV and set at 285.04K. Here the delta is equal to the NETD of the uncooled
sensor. The signal to noise was exactly one when the effect of the atmospheric transmittance
was removed.

The sky radiance was modeled from MODTRAN runs for horizontal paths at the specified
altitudes. The inband target radiance was calculated from a blackbody emitter at the specified
area and temperature, diminished by the atmospheric path transmittance. The path radiance
(target to sensor path) was added back into the expression so that a target at ambient
temperature produces zero signal. The signal was diminished by the optical efficiency as in this
case, 30% of the target signal will be collected by the target pixel. In the bolometer model, the
delta signal produces a temperature difference and resistance change in the bolometer which is
sensed as a voltage difference. This voltage difference divided by the total noise voltage is the
SNR. The target was moved from 1km to up to 50km in horizontal range and SNR’s were
tabulated for all cases.

The top left plot in Figure 17 for case#1 shows SNR’s for the 40 deg FOV 320x240 sensor and
the +30F 4m? target. As expected, SNR’s are shown to be higher for the lower altitudes
tracking with the atmospheric transmittance. The SNR = 6 level for this target is in the 6 to 14
km range for these altitudes. The +30F target is defined as 30F above the sea level
temperature (77F) or 107F and remains 107F at all altitudes. Note that at the lower two
altitudes, the transmittance diminishes the signal much faster. The higher altitudes (above 3000
ft) allow for about twice the SNR6 range.

Case#2 (upper right plot Figure 17) for the 160x120 20 degree FOV sensor shows improvement
in SNR with target temperature delta. All SNR of 6 levels occur within the 3.7 to 4.7 km range
for the +5F to +30F 2m? targets.

In Case#3 for the 25 degree FOV 640x480 sensor, the SNR of 6 levels from the 1m? 130F delta
target are in the 27 to 35 km range. The plot at 10kft shows more attenuation of signal than the
plots at 20kft and 30kft which are nearly identical.

NETD'’s in current sensors will probably be close to the estimated 40mK for the small pixels,
where for the larger pixels, NETD’s may be as low as 30mK. Vendor data has shown the best
FPA’s can achieve NETD’s 10mK or so better than these values; however, average NETD’s
over a decent sample of detector arrays are more in the 30-50mK range. From the limited data
acquired from the vendors for this study, it remains unclear what the limiting noise mechanism
will be for the alpha-silicon and the vanadium oxide detectors. 1/f noise may be the limiting
noise source for both detectors, especially at the higher bias voltages; however, hard numbers
(k-values or Hooge parameters) were not available. If the best detectors are used (lower NETD
values), the case #1 and #2 ranges may be increase somewhat. Cooling the FPA to 220K may
also improve NETD by up to a factor of two according to some L3 data on their alpha-silicon.
We have not seen any data on vanadium oxide at lower temperatures for comparison.
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Figure 18: SNR’s vs. range for case 3 Figure 19: SNR’s vs. range with NETD varied

from 20 mK to 50 mK
In Figure 19 we reproduce the results with some differences in NETD to show its effect on SNR
and range. The baseline NETD was 40mK and other typical and possible NETD’s of 20, 30,
and 50mK produce the plots shown in Figure 19. In general we see increases in range with
reduction in NETD. For the SNR=6 criteria, the ranges for 50, 40, 30 and 20mK NETD’s are 5,
5.6, 6.5 and 8 km.

Uncertainty in NETD, in optical efficiency (a function of the optical spot size and detector area),
and variations in atmospheric transmittance and turbulence will all add uncertainty to these
range estimations. For the lower altitudes, the transmittance will vary much more significantly
with different levels of humidity and aerosol. Currently, three atmospheres have been
generated for use in calculating SNR, the U.S. standard 1976 model with 23 km visibility (rural),
the mid-latitude summer with 23km visibility and then with 5 km visibility (both rural). The 8-12
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micron band transmittances are shown in Figure 20 for these three choices. These charts were
generated from MODTRAN runs for horizontal paths. The MODTRAN data were fit with
exp(-a*range”b) expressions which give very accurate fits to the data from 1 to 50 km path
lengths.

The effect on SNR from atmosphere variability is shown in Figure 21 for the case #2. A +30F
target gives SNR’s vs. range as follows for altitudes of 0 to 3 km for three specific atmosphere
prescriptions. The US 1976 Standard atmosphere with 23 km visibility (aerosols) gives the
highest SNR’s. The second best is the midlatitude summer model with 23 km visibility and the
third best is the midlatitude summer with 5 km visibility. For the sea level altitudes, the SNR=6
range for the three atmospheres are from about 4 km to 5.5 km. Going to a 1 km altitude
improves the range to 5 to 7 km. The SNR=6 range for the US Standard atmosphere is about 9
km for the 3 km horizontal path.
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Figure 20: Three atmospheres currently simulated in program
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Figure 21: Case #2 with a +30F target and at altitudes from 0
to 3 km for the 1976 US standard 23km vis, the MLS 23km vis
and the MLS 5km vis atmospheres.

2.6 Some unique attributes of the model

The model consists of some unique characteristics that were developed to better characterize
microbolometers and uncooled cameras. Some of these attributes are:

1. Detailed equations for NETD and NEP from first principles: bolometer geometries and layer
characteristics.

2. Radiometric expression derived for background solid angle gives more accurate calculation of
NETD for low f-numbers.

3. NETD expressions allow for centrally obscured optics (reflective), as do the diffraction spot
size calculation (EOD for diffraction limited optics which is used in the NEP and NEI
calculations).

4. Response is calculated for all contributions from the heat balance equation, not just the usual
approximation using the leg thermal conductance.

5. Creation of simulated bar target imaging sequences that when observed by the human eye
give MRTD'’s that are in agreement with NVTherm MRTD(f) results.

6. Full use and validation of model to NVTherm equations and outputs for MTF, MRTD and
probabilities of detection, identification and recognition.

7. Model provides a seamless transition from subpixel region (point object images and
performance predictions, NEP and SNR) to resolved region (extended object images and
performance predictions, NETD and MRTD).

The differences in NETD due to the scene solid angle expression used are shown in figure 19.
Expressions found in the literature were either of the form 4F? or 4F*+1. The first overestimates
the solid angle, the second underestimates it. All expressions converged for the larger
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f/numbers, but significantly differ from /1.5 on down. The expression used in the model (middle
curve) gives an accurate value for the area of a sphere subtended by a solid angle phi for all f-
numbers.
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Figure 22: solid angle of scene (phi/pi) gives more accurate NETD at f/1 and lower

2.7 Summary and discussion

A microbolometer model has been developed and validated that predicts accurate NETD values
for specified bolometer materials, geometries and electronics. The model was implemented in
excel and in matlab to provide detailed single pixel predictions and realistic image sequences
complete with nonuniformities and 3-D noise. The model was extended to predict MRTD’s and
probabilities in accordance with and validated to the Night Vision models (NVTherm2002 and
NVThermIP). Both NETD’s predicted by the model and MRTD plots generated by the model
are in close agreement with other model results from literature and to NVTherm outputs and
simulated visual bar target observations. The model was applied to the mission of collision
avoidance to predict SNR’s and ranges for a variety of scenarios. Further efforts in validation
and model development (in order to fully predict and characterize performance) rely on
discerning the practical limits in bolometer pixel manufacturing and the bolometer materials
semiconductor characteristics such as 1/f noise, TCR, resistance and absorbance. Knowledge
of the vendors’ electronics readout and noise reduction schemes and effectiveness will also be
required to determine if electronics noise and spatial noise can be kept below the total of the
other four types of temporal noise (1/f, Johnson, thermal fluctuation, and background
fluctuation) for future designs. The model as it is predicts the major noise components in
correct proportion for both the alpha-silicon and vanadium oxide microbolometers

Some observations here that look to be typical of f/1 uncooled microbolometer sensors are that
both types of detectors (VOx and a-Si) are limited by 1/f noise at the higher bias voltages;
otherwise, higher biases would continue to improve performance. In general, the a-Si
bolometers exhibit slightly faster responses, but also may have higher inherent 1/f noise. MRTD
predictions from my matlab images, NVTherm runs, and from the various equations show that
for a large part of the spatial frequency range, the MRTD remains less than the NETD, up to a
factor of two to three times less. This is a direct result of the eye integration which sums a few
frames (signal) while rejecting some of the temporal noise which provides a square root of the
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number of frames integrated improvement in SNR and MRTD. The eye CTF(f) and the system
MTF(f) functions are the other variables used in the MRTD equation. Eye CTF is dependent on
ambient illumination and display characteristics and the system MTF in the model is comprised
of diffraction effects, detector sampling effects, and spurious response or aliasing.

3 Hardware and Software

To accomplish the goals of the program COTS technology was extensively leveraged. Off the
shelf microbolometer cameras and existing data collection software was modified to meet the
needs of the program.

3.1 Data Collection Software

Streams5 (www.ioindustries.com) a Windows based multistream data collection software. It
allows the simultaneous collection of data streams in multiple formats to multiple devices
(Figure 23). This video transmission formats used in this program was analog, LVDS,
CameralLink and GiGE. It is deeply integrated with Windows via C++ and has open source
PYTHON scripting capability www.python.org. 10 Industries was hired to code special drivers
for the GIGE interface and IMU integration. The data was exported in a RAW format for use
with MatLab (UConn) and MatCad and ImageJ (MilSys). ImageJ is a Java based open source
image processing program supported by the NIH.

Streams 5 [VIEWER] - C:\Documents and Settings\Glenn\My Documents\Piper\Piper 1.vl

Fie Movie Device DVR Saipt/SDK View Display Tools Window Help
s Rk o T IE|SE| L EETNEEE IN=NEE—E I
Ham |k aa " ™ | Multiple stored scenes per movie f
[ Caliibration | Loop 1 | Loop2 | Landing 1 Il [Bonus N__|
4/24/2008 2:00:39.051 PM 4/24/2008 2:01:30.899 PM
\ x|V ar | ®|Piper1 ~|[Landing 1 ®E WuEerw ar
% L3 B [Disabled] o — ) = -
(local) Group? (2] !Em g abiee
% L-3 A [Disabled] o H
{local) Group? (2) 0 818 Live
Scenes
Two L-3 Cameras
collecting simultaneously
Frame 1554/3217 No Zoom 4/24/2008 2:01:30.893 PM Frame 1553/3216 No Zoom 4/24/2008 2:01:30.870 PM
|| =] | e R L
< > < ¥ ’

Figure 23: Streams5 screen capture

Several custom models were created to support hardware setup and GigE driver integration
(Figure 24). The L-3 hardware setup was via a USB port. The GigE was controlled through an
iPort driver developed by Pleora. The IMU (inertial measurement unit) was programmed via the
iPort through a UART to the FPGA (See 3.4).
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Pleora iPort Camera Configuration

General | Camera Select ] MEMs ]

Image Size: 540 x 480, 0 bits per pixel
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Cloze Shutter
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Access Mode: |EBus Driver ™ After NUC Control L-3
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Pleora iPort Camera Configuration

General] Camera Select  MEMs l
Yalue [Hex) to Send;  |EENIIREEERE
4&end Command
Response: |
Setup IMU
ITI Cancel | |

Figure 24: Modules to developed to control the camera and IMU.

3.2 COTS Microbolometers

The two core technologies, Vox and a-Si, (Table 5) for microbolometers were extensively
studied and reviewed for the program. The BAE camera uses the SCC500 core with a third

party CameraLink interface and lens from OPHIR. The L-3 4550AS came complete with lens,

analog output, and a 16bit digital OEM port. MilSys designed for it an interface board for the
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OEM port for both the LVDS and GigE output (See 3.4). Unsuccessful attempts were made to
purchase a DRS 640 X 480 Vox microbolometer. Indigo (FLIR) also sells a similar package, but
was not contacted due to the potential non-disclosure issues. Raytheon has a very small
package (Figure 25), however due to their commitment to meet DoD sales, at the time no cores
were available for testing.

Manufacturer | BAE L-3

Optics 17 90.5”

Pixels 640 X 480 320 X 240 Figure 25: Raytheon microbolometer
FOV 28° 54° 320 X 240, 25um with electronics
Pixel Size 25um 30pum

Technology | VOXx a-Silicon

Range 8-12um 7-14pum

Sensitivity <50mK <50mK

Table 5: Comparison of the specifications of the two(2)
main MB technologies.

As part of the development process the noise and S/N ratio of the cameras (both VOX and -
Silicon) was measured. Several macros were written in ImageJ to process the videos.

Figure 26: STD and average of the L-3 microbolometer. Note the red circle is a defect in the FPA.

The images above (Figure 26) are from the a-Silicon viewing a wall. The above left image is a
standard deviation (n=100) of the still image (AVG n=100) on the right. The STDEV is uniform
over the entire image. The population average of the STDEV is approx 11.5 counts out of
16bits. Note the red circle; it is a problem with the camera developed during the first two
months. Interestingly it does not affect the measurements. It was returned to the factory for
repair.
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The images above are from the BAE Vox viewing the same wall as the a-Silicon. The above left
image is a standard deviation (n=100) of the still image (AVG n=100) on the right. The STDEV
indicates some fixed pattern noise within the image. The population average of the STDEV is
approx 1.5 out of 14bits. The results indicate that both cameras have a S/N 12bits (4096:1).

The cameras were used in three configurations: BAE and L-3 parallel looking at the same
scene (Figure 27), L-3 and L-3 side by side for tracking across the FOV (Figure 28), and L-3
and L-3 both parallel (not shown).

N
-
Figure 27: Camera system used to collect initial ~ Figure 28: Dual L-3 Camera used in later side
data of Ultralight. Both BAE and L3 are shown. by side data collections.

3.3 GPS Data Logger

To track the position of the aircraft relative to other aircraft or the ground, portable GPS data
loggers were purchased from Landairsea (Figure 29). This model was chosen for its accuracy,
2.5meters and its small size. The update rate is only 1Hz, which corresponds to 88ft/s
@60mph. The factory was contacted about increasing the rate, however, it is not possible with
this type of technology at the price point. In general, this resolution was deemed accurate
enough for the tasks required. At the start of each data collection, the logger was located at the
camera mount and then placed in the pilots pocket or on board the aircraft. The results were
later exported into their customer software, a text file or Google Earth for post processing.
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Figure 29: LandAirSea GPS data
logger.
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Figure 30: An example of the data export from the GPS tracker into Google Earth.
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3.4 Aircraft

Two types of light aircraft were used for data collection Piper (Figure 31 & Figure 32) and Kolb
Ultralight (Figure 34). The original work by Priest et al used a Cessha as its standard target;
however, a Piper is a close match (Table 6) and was a more available aircraft. Most of the data
collections, ground-air and air-air used the Kolb Ultralight. The pilot was very cooperative and
he flew out of the uncontrolled airport at Alloway NJ (See 3.6).

Figure 31: Piper aircraft used for data collections.

Figure 32: Piper from website.

Figure 33: Cessna from website.

Piper Cessna
Maximum Take-off 2,750 Ibs/1,247 kg 2450 Ibs/1111kg
Weight
Useful Load 960 Ibs/437 kg 758 Ibs/343kg
Length 247 ft/7.5m 27'2"/8.3m
Height 7.9ft/2.4m 8'117ft/2.7m
Wing Area 170 ft*/15.79 m2 174 ft°/16.2 m*
Wing Span 35.4 ft/10.8 m 36'1"/11m

MAXIMUM SPEED

145 kts/269 km/h

123 kts/228 kph

CRUISING SPEEDS

137 kts/254 km/h
75% @ 8kft

122 kts/227 kph
80% @8kft

Table 6: Specifications for Piper and Cessna.
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Figure 34: Kolb FireStar Ultralight 33ft wing span cruising speed 60mph.

The Ultralight is constructed of tubular aluminum and fabric wings. The engine is a multistroke
‘lawnmower” type with a large muffler. The engine is pointed towards the rear of the aircraft.
The pilot indicated that the muffler during operation approaches 1200F (Figure 35). At range,
the wings provide some thermal contrast with the background sky, however the primary
background contrast or hot spot is provided by the muffler.

Figure 35: LWIR image of the Ultralight. Muffler runs at
approximately 1200°F.

3.5 Camera hardware development

The BAE camera was purchased from a third party integrator which provided a CameraLink
interface providing a full digital data collection. However, the L3 camera core was only available
with analog output or OEM 16bit digital port. Custom hardware is required to use the OEM port.
In the first phase, a OEM to LVDS interface was designed (Figure 36-Figure 38). The LVDS
interface uses a 0.5” diameter stiff cable. This cable was determined to be not compatible with
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the goal of developing a small data logging system that could be flown in multiple platforms,
ranging from a small UAV to a larger manned aircraft.
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Figure 36: 3D model of LVDS circuit board Figure 37: Silk screen of circuit board.

with L-3 AS4500.

LVDS
Cable

Figure 38: Assembled camera and cable. Figure 39: L3 Core with LVDS circuit board.

The second stage of development was to integrate IMU with a GIigE interface. The GigE
interface was chosen because of its high bandwidth and small cable size (Figure 40-Figure 42).
The IMU was an integrated module produced by Analog Devices AD16355. It is based on their
IMEMs process. Two cameras were completed for use in air-air testing.

; Interface Cableto PleoraiPORT
1 GigE Ethemnet MilSys 910-020-1A PT1000-ST Gig-E
Interface board Ethernet Engine
MEMs -
connector

AS54550L-3

Figure 40: 3D model of GiGE and IMU with L-3 Figure 41: View of the completed camera.
AS4500.
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Xilinx FPGA

L-3AS4550 AD16355 interface (onfar

| MEMS unit side of board

Camera

Figure 42: View of the completed camera.

To collect air-air data an ITX form factor PC (Figure 44) was chosen due to its size, power
requirements, and dual GiGE ports. A small ruggedized 80GB disk drive was install. A portable
Lead Acetate battery and charger were installed in the Kolb Ultralight behind the pilots seat
(Figure 43). The camera was installed on a removable mount on the nose (Figure 45). The
mount was isolated from aircraft with vibration mounts. The engine is also isolated from the
airframe wit vibration mounts. The pilot indicates that the aircraft does not vibrate due to the
engine.
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Figure 43: Installation of the computer, Figure 44: Mini-ITX computer.
battery, and DC charger.

i

!

Figure 45: View of the completed camera installed in the UltraLight.

3.6 Airports

All of the data collections took place at two airports, Pottstown, PA (Figure 46-Figure 48) and
Alloway (Figure 49 & Figure 50), NJ, during 2007-2008. Pottstown is a public ATC local
municipal airport. Alloway is a private uncontrolled airport. Due to the flexibility and lack of
restrictions, Alloway airport was the primary chose for data collections.

3l Location
of
i Camera

Figure 46: Ariel View with flight path of the Pottstown Airport, PA.
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Figure 47: Dual camera setup at Pottstown Figure 48: Ariel View of the Pottstown
Airport. Airport, PA.

Camera

Location

Figure 49: Ariel View of the Alloway Airport, Figure 50: Ground level view of the Alloway
NJ. Airport.

4 Representative Data Collections

The following is a representative sampling of the ground-air data collections and their range
estimates (Figure 51-Figure 54 & Table 7).
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Figure 51: BAE (left) and L-3 (right) collected at the Alloway Airport using camera configuration in
Figure 27.

-
.

Figure 52: L-3 both parallel (Figure 28) collected at Pottstown Airport.
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Figure 53: L-3 side by side (Figure 28) collected at Pottstown Airport.

Figure 54: Frame showing Piper crossing from one camera FOV to another later in the data
collection of Figure 53.

On Oct 31 both the BAE and L-3 cameras were operational and using the Streams5 software
the video was collected synchronously. The pilot was instructed to pass as close as
comfortable above the camera tripod and fly straight for 3 miles climbing to 1000ft. The pilot
had a GPS data logger in his pocket. Actuality the pilot trended to the right an flew out of the
FOV of the cameras on two of the three passes. Based on the Oct 30 video, on Nov 28 the pilot
was instructed to fly to 3000ft with the thought being that the background would be clearer and
lower in temperature thereby improving the range performance of the camera. The pilot few
straight however, he reached the 3000ft at 3 miles. Review of the data indicated that he was at
approximately the same altitude at the limits of visibility of the camera.

Start — First moment that the aircraft is visible in the scene

End — Last moment that | can see the aircraft. Aircraft is at one pixel and the Scene is zoomed
on the monitor

Comments — The distance was determined by aligning the Start/End Times with the GPS data.
Note:
1) When in black and white, Streams5 displays 256 levels of gray the window and level
need to be adjusted to try to enhance the visibility of the single pixel.

2) The BAE camera has 4X large lens.

Camera Start End Comments
Scene 2 BAE 9:52:52 9:54:40 Dist -1.9m(3km)
L-3 9:52:52 9:54:40 Dist -1.9m(3km)
BAE 9:52:52 9:55:14 Dist — 2.6m(4.1km)
Note: | prematurely cut off some of this scene data during editing
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GPS Data Scene2.txt AVG Speed 63.6mph
Flew out of FOV
Altitude — 879ft
Scene 3 BAE 10:13:55 10:14:41 | Dist — 0.9km(1.5km)
L-3 10:13:55 10:14:45 | Dist — 0.9km(1.5km)
GPS Data Scene3.txt AVG Speed 60.7mph
Flew out of FOV
354ft
Scene 4 BAE 10:24:31 10:27:36 | Dist — 3.1m(5km)
L-3 10:24:29 10:26:31 | Dist — 2.0m(3.2km)
GPS Data Scene 4.ixt AVG Speed 60mph
Altitude 958ft
The short ranging distance for
the L-3 mimics scene 2.
Table 7: Slant Range estimates of ground-air data.

Figure 55 is the initial test flight of the hardware developed above (Figure 42-Figure 45). A
second Kolb Ultralight was used as the test aircraft. The hardware and software performed as
expected and both video and IMU data was collected. The second pilot was not expected at the
initial test flight and the GPS dataloggers (Figure 29) were not brought to Alloway Airport. On
the inauguration flight, the second test pilot let his GPS on the wing of the aircraft and it damage
the flap and the propeller. Before the aircraft could be repaired or another pilot and aircraft
arranged time ran out of this program.

Figure 55: Initial test flight of the IMU for Air-Air
data collection.

The IMU collects data along six axis, three acceleration and three angular velocity. Figure 55
plots the absolute roll angular velocity. The blue line represents both the absolute translation of
the aircraft in degrees. The red line represents the translation of aircraft due to fast vibrations
as one might expect due to the motor (2-5Hz). The goal of adding the IMU to the camera was
required to stabilize the image due to vibrations not physical translations of the aircraft. The
track processor would use the INS from the aircraft to correct for translations.
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Figure 56: The angular velocity of the roll of the aircraft for Figure 55.

5 Algorithm Development

Dr. Bar-Shalom and Dr. Willet are world renowned researchers in the area of small target
detectors and target trackers, along with Richard Osborn (grad student), they were hired to
develop both a small target detector and a tracker for the PCAS program. Based upon their
experience, the attitude was that the technology tasks have been solved, and that what was
needed was a unique implementation (i.e. nothing needs to be invented). (Due to the software
used to create their report, it is included here as a static reference. The data provided by MilSys
for their development work was ground-air only.) As discussed below, technical difficulties
arose and time ran out on the present contract before air-air data with inertial measurements
could be provided. Their small target detector is based upon single frame processing with a
measurement window ranging from 50 X 50 to 20 X 20 pixels.

5.1 UConn Report
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Passive Collision Avoidance System, Final
Report

R. W. Osborne, III, Y. Bar-Shalom, P. Willett
September 2, 2008

1 Introduction

Commercial airliners are currently equipped with systems which will warn
when other aircraft are within an unsafe range in order to mitigate the
chances of a midair collision. Currently, the unmanned aerial vehicles (UAV),
used for military operations, do not have a system which will warn of impend-
ing collisions with other airborne targets. Such a system should be able to
track uncooperative targets, and therefore must not rely on communications
between aircraft. In this case, the sensors used for tracking will be imaging
sensors mounted on the airframe in order to observe and track targets in the
surrounding airspace.

The main difficulty that arises from using imaging sensors is the fact that
the resulting data will be only a two-dimensional representation of the space
around the aircraft, and as such, will lack any range data for the targets which
must be tracked. Without range data, the only way to detect an impending
collision is to estimate the line-of-sight (LOS) velocity of the tracked targets
and look for any target with a nearly zero LOS velocity.

Section 2 outlines the method of extracting measurements from the image
data provided by the camera(s). Section 3 outlines the motion model and
tracking method used to maintain the track on the target, as well as outlining
the method of initializing the track. This section also looks at the consis-
tency of the tracker, important for evaluating the “credibility” of a collision
warning. Section 4 discusses the method of declaring a warning of possi-
ble collision. Finally, Section 5 discusses why comparison of the extracted
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measurements to GPS data (as well as possible hand-off of tracks between
multiple cameras) is hampered by significant (and unknown) lens distortion.

Additionally, information on previous measurement extraction and target
tracking methods, as well as measurement conversion formulas, can be found
in the appendix.

2 Measurement Extractor

In order to track targets within the field of view from each frame of a camera,
the measurements for each detected target must be extracted. For the pur-
poses of tracking with a single camera, the measurements can remain pixel
measurements and the tracking may be performed in the pixel space. Track-
ing with multiple cameras, however, would best be accomplished by tracking
using azimuth and elevation measurements. In the absence of any distortion
from the camera lens, the pixel measurements could be easily converted to
azimuth and elevation measurements (see Appendix A). Distortion from the
camera lens, however, will make the conversions much more difficult (see
Section 5).

2.1 Extraction Algorithm

Previous methods of measurement extraction (outlined in Appendix F.1)
either resulted in a large number of false measurements at the top of the
frame or a number of missing measurements from true targets which are in the
frame (although they are unintentional targets which appear at presumably
much greater distances than the test target). In order to address this, another
method of measurement extraction is proposed.

The neighborhood average for pixel ¢, denoted as I;, will be calculated as

= 1
[i=— 1, 1
: L1L2 weW; o ( )
where I, is the intensity of pixel w, LqLs is the size of the window, and W;
is the set of pixels of the window centered at pixel 4.

In addition to calculating the neighborhood average in a window, the
standard deviation of the intensities in the window is also calculated. The
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standard deviation in the window corresponding to the 7th pixel is

1 1/2

g S P 2

(25 5 0--17) @

where I, is the intensity of pixel w, L Ly is the size of the V_Vindow, W; is the

set of pixels in the sliding window centered at pixel ¢, and I,, is given by (1).
A detection is now declared at pixel 7 if

|Z; — T| >aioy (3)

where o can be adjusted to tune the measurement extractor.

As a final step in extracting the measurements, the centroid of each group
G of detected pixels is calculated. Detected pixels are grouped together if
they share a side or corner (i.e., they are connected in a horizontal, vertical
or diagonal direction, an “8-connected neighborhood”). The centroid for a
group of pixels is calculated within a rectangular window Wg which includes
a one-pixel border around the group G. The centroid, for one dimension, is

Diewe Tili

S W
where z; is the z-coordinate of pixel 4, I; is the intensity of pixel 4, and the
group G of pixels ¢ are those which have values from (3) which exceed the
threshold and have been grouped together. A similar expression is used to
calculate the y-coordinate of the centroid for group G.

Figure 1 shows the centroid measurements using (3), « =5 and Ly = Ly =
101. Preliminary testing seems to favor a larger window for this particular
measurement extractor. The use of such a large window, however, causes
long computation times and a window of length 51 was used in later runs.

Additionally, extracted measurements which are found below the horizon
can safely be ignored since there is no danger of collision with a target which
is found to be below the horizon. This can help eliminate some false mea-
surements arising from bright spots along the ground in some of the video
data utilized here.

ic(G) =

2.2 Second Stage Measurement Extraction

In addition to utilizing the method of measurement extraction outlined above,
it is possible, in some circumstances, to further improve the measurement ex-
traction by repeating a similar stage of measurement extraction. Since the

3
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Figure 1: Measurements (in pixel coordinates) obtained from the extractor with the
5¢ rule (ultralightl_archive.vl, scene 3, BAE camera)

idea behind this measurement extraction method is to search for pixel in-
tensities which stand out from the background, the target pixels should not
be included amongst the background pixels during detection. The problem,
of course, is that detection must first be carried out in order to know which
pixels should not be included within the background. In an attempt to mit-
igate this “catch-22” style process, a two stage measurement extraction may
provide some benefit.

After the first round of detection is carried out in the manner outlined
above, the detected pixels are eliminated from the calculation of the (1) and
(2). A second stage of detection is carried out in exactly the same manner,
except using the newly calculated I; and o;.
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2.3 Variance of Extracted Measurements
2.3.1 Theoretical Measurement Noise Variance Calculation

Rather than simply make an assumption about the measurement noise vari-
ance, it is possible to evaluate the measurement noise variance during mea-
surement extraction. The measurement noise variance in the case of an image
centroid (equation (4) above) has been derived previously [1]. The measure-
ment from the extractor (equation (4)) can be viewed as

Zo= o+ We (5)

where z, is the true image centroid in the z-coordinate and w, is the (zero
mean) centroid measurement noise. Furthermore, the measured pixel inten-
sity is

where s; is the true intensity of pixel ¢ and n; is the noise intensity in pixel 2.
The variance of the noise w, in the centroid measurement can be evaluated
in a window of the image as [1]

2 2 2
2 Z, z'iEVVG Z; EiEVVG S; (7)

TR T miP D) 12(Tiewg 5

where m is the number of pixels in the window, r is the SNR in the window,
I; is the intensity of pixel 7, W is the rectangular window around the group
G of pixels as in (4) (i.e., a single target), and z, and z; are measured using
a coordinate system centered on the window. The value of the SNR in the
window, 7, is

p — ZicWq Si ®)
mo
where o is the standard deviation of the image noise.
Since the value s; is not available directly, the following approximations

can be used:
Y #x Y I -mo? ©
€Wy ieWs
icWa ieWa

All of the above equations assume that the noise intensity is zero mean, so
the estimated noise mean must first be subtracted from the measured pixel
intensities before calculating the centroid measurement variance.
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2.3.2 Empirical Measurement Noise Variance Estimation

Rather than relying on theoretical calculations for the measurement variance
of the centroid of an IR target, there is another possible method of variance
estimation that can be used. Previously used to estimate the unknown mea-
surement noise variance of radar systems (see [3]), this method uses multiple
Interacting Multiple Model (IMM) estimators in order to estimate the un-
known variance. The use of an IMM estimator is not specifically required
by this method, however, IMM estimators often lead to very good tracking
performance for maneuvering targets.

In order to estimate the unknown measurement variance, multiple IMM
estimators (three in this case) must be run simultaneously, each with its
own assumption for the measurement noise variance. Each estimator should
also be identical except for the assumed measurement noise variances. For
the scope of this work, the three estimators were set up with one using an
appropriate initial variance, and the other two using scaled versions of that
variance (50% and 150% of the assumed variance).

In order to determine the most likely measurement noise variance as-
sumption, the likelihood of each estimator must be determined. Each IMM
estimator calculates the probability of the system being in each mode as-
sumed by the estimator (details on the IMM estimator can be found in [2]).
The mode probabilities can then be used to evaluate a likelihood function
for each IMM estimator.

The probability that, according to IMM number m, the system is in mode

i at time k, given the data at time kK — 1, withi=1,...,r is
. 2 .
e (K| — 1) = > pjpid (B — 1) m=1,.. ol (11)
j=1

where . (k — 1) is the probability of being in mode 5 at &£ — 1, and pj; is the
probability of transition from mode (motion model) j to mode 7.

The likelihood function for IMM estimator m at time &k can then be writ-
ten in terms of the likelihood functions for each mode of this IMM estimator
and the above probabilities, namely (2],

Anl2(R)] = :ZIMzw);s:‘n(mk S0, S W RE-T)  (12)

where N[2(k); 28, (k|k—1), 5%, (k)] is a Gaussian pdf that represents the likeli-
hood function of mode 7 of IMM m at time &, 2¢_ is the predicted measurement

6
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for filter ¢ and S%, is the innovation covariance of filter 2. In other words,
the likelihood function of the IMM estimator is the sum of the likelihood
functions of each filter multiplied by the one-step predicted probability of
being in that mode.

As more data are obtained, the likelihood function for each IMM esti-
mator can be updated in the form of a cumulative likelihood function, given
as

A% = TT Anlz(8)] (13)
k=Fky

where k£ is the starting time and ks is the ending time. The probability of the
mth IMM estimator (measurement model M,,) having the correct variance
assumptions given the data up to and including ks can then be obtained as
B & P{M,,|Z*} = _An (14)
which assumes a uniform prior.
The probability from each estimator can then be used as a weighting to
arrive at the estimated measurement noise variance, i.e.,

n

6::2- = Z IBmUZm (15)

m=1

where n is the number of IMM estimators used (n = 3, in our case). This
variance can then be used by the “center” estimator, while the others use
scaled versions of the newly calculated value. This process continues as the
estimators track each target and result in a continuously updated measure-
ment noise variance.

A method of measurement noise variance estimation such as this is nec-
essary for tracking in this passive collision warning system due to the non-
stationary nature of the measurement noise. For example, as targets move
closer or farther from the camera, the measurement noise will change as the
target’s energy is spread over a different number of pixels. Additionally, as
the target moves throughout the scene, the environment will have differing
effects on the target detection and measurement noise.
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3 Target Tracker

Once the measurements corresponding to each detection centroid in a frame
of data are obtained, the tracker can use these measurements to start tracks
and estimate target trajectories. The target state consists of position, veloc-
ity and acceleration in the focal plane (FP). Currently, a nearest neighbor
approach is utilized to assign measurements to tracks. Each currently run-
ning track is assigned the measurement which is closest to the predicted
measurement location (provided it falls within a validation region centered
at the predicted measurement [1]). Currently a 5o validation gate is applied
to the measurements. The number of measurements in a validation gate is
rarely greater than one, so using a measurement assignment method more
complex than the nearest neighbor approach is not necessary. Once measure-
ments are assigned to the currently running tracks, each track is updated via
an IMM estimator [2] utilizing two Kalman filters which assume appropriate
motion models.

3.1 Target Motion Models
3.1.1 Autocorrelated Process Noise Model

Standard nearly constant velocity (NCV) and nearly constant acceleration
(NCA) motion models assume that the process noise (acceleration in the
NCV model and acceleration increment in the NCA model) can be treated
as white. In the case of video data, the sampling time is 1/30 s, and the white
process noise assumption becomes unrealistic. The accelerations the target
undergoes clearly must be correlated between samples when the sampling
time is very small. For this reason an autocorrelated process noise model will
provide higher quality target tracking than NCV or NCA motion models.

Specifically, the autocorrelated process noise model used here models the
target accelerations as an exponentially autocorrelated noise with zero mean
[2]. The autocorrelation of the target acceleration a(t) is therefore

Ea(t)a(t +7)] = o2,e~*"] a>0 (16)

where 02, is the instantaneous variance of the acceleration and 1/a is the
time constant of the target acceleration autocorrelation. For this model, the
state equation will be

x(k+ 1) = Fz(k) +v(k) (17)

8
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where

1 T @f-1+e¢*T)/a® 0 0 0
0 1 (1—eTYja 0 0 0
Fo_ |00 g 00 0
S ]0 0 0 1 T (o —1+e°T)/a?
00 0 01 (1—eoT)/a
L0 0 0 00 gaF
I T 0 0 0 0
0 1 T 0 0 0
00 1—aT 0 0 0
N 0 1T 0 L&)
0 0 0 0 1 T
00 0 00 l—af
Additionally, the process noise v(k) will have a covariance matrix of
T5/20 T4/8 T%/6 0O 0 0
T8 T3/3 T2/2 0 0 0
T3/6 T2/2 T 0 0 0
- 2
Q=0 | g 0 0 T%/20 T8 T/6 (19

0 0
0 0

0 T8 T3/3 T?/2
0 Ti6 T2/2 T

A value of a = 25! was deemed appropriate for both motion models of
the IMM estimator as it results in a decorrelation time of roughly 1 second.

3.2 Choice of the Process Noise Level

The standard deviation of the process noise, o,,, should be chosen to cover
the expected accelerations of the targets. Early tests were run using three
scenes of an ultralight aircraft passing over the camera. The supplied data for
the BAE camera was examined to determine the test target’s accelerations
both near to and far from the camera. The position of the test target was
found over two one-second intervals in order to estimate the velocity and
acceleration of the target, the difference in position providing velocity and
the difference of two velocity estimates providing the acceleration estimate.
The estimated accelerations are shown in Table 1. Scene 4 was estimated to
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Ultralight1_Archive.vl
BAE Camera Near Camera | Far From Camera
Scene 2 |a| = ( 4113 ) la| = ( 82 )
Scene 3 la| = ( Sfllig ) la| = ( 8; )
- 8] = ( ra ) 8= ( o )

Table 1: Estimated acceleration of the test target from the BAE Camera in various
scenes

have a zero acceleration in the y direction for the “near camera” section since
the velocity estimates were found to be equal in that portion of the video.

Based on the estimated accelerations of the test target, a value of 7,,, = 10
pixels/s? was used in some simulations on Scene 3 using a single Kalman filter
with an autocorrelated process noise model with o = 0.5s™. The difference
in acceleration values between the near and far targets as well as between
different scenes, however, suggested that a multiple model approach would
be needed eventually for better tracking across different scenarios.

In the case of the IMM estimator which utilized two autocorrelated pro-
cess noise models, parameters of oy = ap = 257 and 02,; = 25 and 02, = 2
were used. It should be noted that, at this stage, the .3 camera was used
exclusively; and the lower resolution of the L3 camera, as well as the different
a values, leads to the use of different process noise levels. In general, for an
autocorrelated process noise motion model, the choice of a,, is related to the
process noise, g, of a white noise acceleration (WNA) model by [2]

2
~0m =4 (20)

3.3 Track Initialization

In order to initialize tracks, a validation gate (in pixel space), based on the
assumed maximum velocity of a target over one sampling period, is set up for
each measurement location for the potential tracks. Originally, the assumed
maximum velocity of 100 pixels/s in the z-direction and 50 pixels/s in the

10
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y-direction was used when the target was entering the camera frame at a
relatively close distance (and was therefore much larger in number of pixels).
The maximum velocity assumption is important only for track initialization,
however; and for a realistic scenario, a target of interest will be initialized at
a much greater distance, and will therefore have a much smaller maximum
velocity in pixel space. For this reason, the track formation using maximum
velocity assumptions of 10 or 20 pixels/s (in both z and y directions) are
likely more reasonable.

Additionally, instead of insisting that two consecutive measurements be
found (as described in section Appendix H.1), the track initialization will
instead look for three valid measurements within five sampling intervals.
This amounts to an M/N logic [1] with M = 3, N = 5 and will allow for
intermittent detection of a target which is a large distance from the camera.
In this case, the validation gate must be increased when there is a missed
detection. The increased gate size should not cause difficulties for the tracker
as the initial gate is small due to the assumption of the target being at far
distances (when track initialization should be taking place) and therefore
appearing as a small low-maneuvering target. For the case of “three out of
five” track initialization, the validation gate will cover, at worst, three times
the maximum velocity over a single sampling interval.

Following track maintenance (see section 3.4) all the remaining measure-
ments in the frame are used to initialize new possible tracks. All unassigned
measurements from a frame are saved as starting points for new potential
tracks at the next sampling time.

3.3.1 Comparison of Track Initialization Methods

Table 2 compares the number of tracks formed and time of track confirma-
tion for each of the track initialization procedures (2/2 and 3/5 logic). The
track initialization was run using the data from the BAE camera, movie file
“Ultralight 1_Archive.vl,” scene 3, the measurement extractor with window
length 51 and a 5o threshold, and the older WPA motion model (see section
Appendix G.1).

In each case, the test target track was always formed and the extra tracks
were the result of measurements that are the result of intermittent bright
spots along the tree line or clouds, or the result of a flock of birds passing
through the camera frame (e.g., the upper part of Figure 1).

11

51



[rmaws Umaz| (in pixels/s)
Number of Tracks [100,50] | [20,20] | [10,10]
2/2 Initiator 491 140 137
3/5 Initiator 320 81 77
Test Track Confirmation Frame
2/2 Initiator 1888 1888 1888
3/5 Initiator 1887 1887 1887

Table 2: Comparison of number of tracks formed for various track initialization pro-
cedures

3.4 Track Maintenance

Once potential tracks have been confirmed, they are treated as if they are
a true track. A validation gate is set up at each currently running track’s
predicted measurement location. The closest measurement to the predicted
measurement location that falls within the validation gate is assigned to
that track. The measurement is then used in an IMM estimator, which
passes the measurement to two standard Kalman filters with autocorrelated
process noise models as discussed in 3.1. After the currently running tracks
are assigned measurements and propagated, the remaining measurements
of the frame are used in initialization of new tracks or saved as potential
starting points of new tracks for the next frame. If a track does not have
a measurement, assigned to it, the track will be propagated “open-loop.” If
four consecutive missed detections occur, the track will be terminated.

3.5 Distance at Track Confirmation

In order to determine the distance at which the test flight target is acquired,
the frame number at track confirmation is recorded. The timestamp of that
frame can then be compared to available GPS data to determine the location
of the target of interest. Use of the equations of Appendix C, with the camera
location as the origin, will result in the ENU vector of the target at the time
of track confirmation. Simply taking the magnitude of this vector results in
the distance from the camera to the target.

The following distances of track confirmation utilize a measurement ex-
tractor with L; = Lo = 51 and 5¢ threshold, and a single filter tracker with
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52



autocorrelated motion model with o = 0.557! and o, = 10 pixels/s>. The
camera is assumed to be located at 39°32/31.82” N latitude, 75°18'14.5” W
longitude and 0 elevation (in the absence of altitude information). The dis-
tance at track confirmation using the BAE camera is shown in table 3 (Note:
the video is played backwards to simulate a target approaching the camera
rather than flying away from the camera).

BAE Camera | Confirmation Frame | GPS Coordinates | Distance
Scene 2 1814 39° 33/ 2.9375" N 973 m

75° 18" 19.9005" W
305 ft

Scene 3 1887 39° 33/ 1.8832" N 941 m

75° 18 20.1322" W
201 ft

Scene 4 2657 30° 33 25.7443" N | 1,723 m

75° 18" 31.3793" W
669 ft

Table 3: Distance to target of interest at track confirmation for various scenes

3.6 Target Tracker Consistency

Since the estimated state from the target tracker will be utilized to test
whether or not a target is on an impending collision course, it is important
that the target tracker be consistent® [2]. Since the consistency must be tested
from a single run (since the tracker is operating on real data) the consistency
of the target tracker must be tested with the normalized innovation squared
(NIS). The normalized innovation squared is

e (k) = v(k)'S(k) " v (k) (21)

where v(k) is the innovation at time k and S(k) is the innovation covariance
at time k. If the filter is consistent, the NIS will have a chi-square distribution
with n, degrees of freedom, where n, is the dimension of the measurement

LConsistency of a state estimator is the requirement that its calculated state estimate
variances are statistically compatible with the actual errors.
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(in our case, n, = 2). In order to test from a single run, the time-averaged
NIS

= 1 & ! —-1

B =iz I; v(kY S(k) v(k) (22)
may be used, where K€, follows a chi-square distribution with Kn, degrees
of freedom [2]. In the case of a time-averaged NIS over 100 samples, the 95%
confidence region will be between 1.63 and 2.41.

In the case of an IMM estimator, there are two (or more, in general)
differing motion models, which each result in different values for (21). In
this case, the NIS will be approximated as a combination of each mode’s
NIS, €,:(k), where

evi(k) = vi(k)'Si(k) " wilk) (23)

and ¢, will be expressed as
e (k) =Y pi(k)ei(k) (24)
=1

where 7 is the number of modes in the IMM estimator and g is the probability
that the system is in mode 7. The time-averaged NIS can now be calculated
as before, using (24) in place of (21).

3.6.1 Fixed Centroid Measurement Noise

Figure 2 shows the sliding window time-averaged NIS for a single model
filter using an autocorrelated process noise model with o = 0.557, 7, =
10 pixels/s?, and o, = 0.5 pixel. Figure 3 shows the time-averaged NIS with
the same parameters, except that measurement noise standard deviation o, =
0.1 pixel. Both filters were run on the data from Scene 3 from the BAE
camera. Both figures show the time-averaged NIS over a sliding window of
100 samples.

When the measurement noise standard deviation is taken as 0.5 pixels,
the average NIS is clearly far from the values expected for a 100 sample
average NIS. Since the NIS is much lower than expected, the innovation co-
variance must be too large, suggesting that the measurement noise standard
deviation was too large. When the measurement noise standard deviation is
lowered to 0.1 pixels, the average NIS takes on values much closer to what is
expected. Furthermore, the movement of the NIS may also suggest that the
measurement noise standard deviation may vary throughout the scene. If

14

54



100 Sample Sliding Average NIS
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Figure 2: 100 Sample sliding window time-averaged NIS with o, = 10 pixels/s?,
o, = 0.5 pixel

the measurement noise does indeed change depending on the scenario, then
a tracker which can adapt to these changes would be preferable.

Figures 4 and 5 show the sliding window time-average NIS for a single
model filter with an autocorrelated process noise model with @ = 0.5571,
om = 2.5pixels/s?, and o, calculated using (7). Figure 4 uses data from
camera B, scene “Loop 1”7 of the “Piperl.vl” movie file. Figure 5 uses the
data from camera A of the same scene.

3.6.2 Dynamically Determined Centroid Measurement Noise

By using the theoretical calculations for the variance of the centroid mea-
surement noise (equation (7)), the tracker can utilize a measurement noise
standard deviation which is free to change throughout the scenario. Addi-
tionally, since the tracker is evaluating the measurement noise from the data,
each camera will be able adjust to the particular view it has of the target.
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100 Sample Sliding Average NIS
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Figure 3: 100 Sample sliding window time-averaged NIS with o, = 10 pixels/s?,
o, = 0.1 pixel

Different cameras may detect a different number of pixels for each target, for
example, so the centroid measurement noise shouldn’t be assumed to be the
same across cameras.

4 Threshold Test for Collision Course

Lacking any range information, the only way to test whether the target is
on a collision course is to examine the estimated angular (LOS) velocity of
the target. For the case of tracking a target in pixel space, the velocity
estimates in the two pixel dimensions (¢ and y) can be used. A target
which has an estimated angular velocity near zero can be assumed to be on
a collision course. As long as either # or 7 is estimated to be far enough from
zero (greater than 3¢ away), no collision will be declared. In order to set a
threshold for declaration of an impending collision, the filter-calculated track
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Figure 4: 100 Sample sliding window time-averaged NIS with a,,, = 2.5 pixels/s?, o,
calculated, camera B

covariance will be used to compare the estimated velocity to its standard
deviation.

Figures 6 and 7 show example plots of % and ;{L., respectively, with the
dashed lines denoting the 30 boundaries. The data in this case is from a
single model tracker using autocorrelated process noise with a measurement
noise standard deviation, o., assumed to be 0.1, which results in the more
consistent filter as seen in figure 3. When both estimated velocities are found
to be within 3¢ of zero, a collision could be declared. As the track continues,
however, it is clear that no collision will occur as at least one of the estimated
velocities is more than 3¢ away from zero. In this case, the estimate of &
is almost never within 3o of zero, so there will be no collision warning from
this target.
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Figure 5: 100 Sample sliding window time-averaged NIS with o, = 2.5 pixels/s?,
o, = calculated, camera A

5 Comparison Between Calculated Track and
GPS in LOS Space

In order to compare the extracted measurements and the calculated track to
the available GPS data of the target, the measurements must be converted
from pixel space to LOS space. Appendix A-Appendix D outline the neces-
sary calculations and conversions for comparing the calculated track to GPS.
These are done assuming a distortionless lens where a pixel location can be
converted directly to a LOS angle.

Additionally, the camera boresight angles and the roll of the camera can
be estimated by comparing the measurements from the camera to the avail-
able GPS data. Figure 8 shows the GPS data from the Piperl.vl file scene
“Loop 1”7 in azimuth and elevation angles as well as the measurements from
camera B converted to azimuth and elevation angles. The offset of the two
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Figure 6: Collision threshold test on the estimate z — ratio of the velocity estimate
to its standard deviation estimate: “non-zero velocity estimate’ = "no collision”
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Figure 7: Collision threshold test on the estimate y — ratio of the velocity estimate
to its standard deviation estimate

20

60



Camera B

20r
S— - T S S —
15}
GPS converted to LOS
(az, el centered at camera)
2 10}
@
=
(7]
h=]
£
s S5
Camera pixels converted to LOS Overlapped portion
o- [(0,0) is camera boresight] i
///
~ N
a8 1 ) L L I . |
-40 -30 -20 ) 0 10 20 30

az (in degrees)

Figure 8: Comparison of GPS data with measurement conversions to LOS, Camera
B, Piperl, Loop 1

plots represent the azimuth and elevation angles of the camera boresight as
well as a possible non-zero roll angle of the camera. Figure 9 shows simi-
lar data for the same scene with camera A. Both figures also highlight the
portions of the data for which the frames of the two cameras are overlapped.
Unfortunately, in both cameras, there is a “barrel” distortion clearly
present at the edges of the frame, which causes the converted camera pixel
measurements to match poorly to the LOS based on GPS data. This causes
the overlapped portion of the two cameras to exhibit a small amount of roll
when in fact camera A is rolled a great deal with respect to camera B. The dis-
tortion at the edge of the frames, therefore, will hamper relative registration
and there can be no handoff of target tracks from one camera to the other.
Additionally, comparison to GPS data is not possible, due to the unknown
distortion mapping between apparent focal plane and true azimuth/elevation
coordinates, this discrepancy being largest near the image boundaries.
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Figure 9: Comparison of GPS data with measurement conversions to LOS, Camera
A, Piper 1, Loop 1
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APPENDIX

Appendix A Conversion of pixel location to
azimuth and elevation

We wish to convert measurements in pixel space to measurements in angle
space. The following derivation shows the conversion of pixel (z,%) to az-
imuth and elevation angles o and €, respectively (measured about the frame
boresight). For an image of width N, pixels and height N, pixels, the carte-
sian coordinates of a pixel will be numbered left to right (z = 1,..., N,) and
bottom to top (y = 1,...,N,). More traditional pixel location representation
(the [1,1] pixel located in the top left corner of the image) can be used by
simply utilizing the transformation z; = z and ; = N, —y + 1. The camera
is assumed to have a horizontal aperture angle A, and vertical aperture angle
A,, focal length of f, and square pixels of width p.
The distance to the rightmost edge of the image is given as

1 Ay
gVap = ftan7 (25)
and the horizontal distance to the center of pixel (z,y) is
(wf%f%>p=ftana (26)
Now using (25) and (26) we have
A\ /22— N, — 1\
it e 8 @
= tan (Lan < 5 ) ( N, )) (27)
In a similar fashion the distance to the topmost edge of the image is given
as
1 A
§Nyp = ftan 71" (28)
The vertical distance to the center of pixel (z,v) is
N, 1 tan e
o8 2 e 29
(y 2 2) P fcosa (29)
where « is taken from (27). Relating (28) and (29) we now have
A 2y— N, —1
¢ =tan™! [ tan (—y> cos (a) yiy) (30)
2 Ny /
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Now that we have the measurement in terms of azimuth and elevation
in the Focal Plane (FP) frame, we wish to express the measurement as a
line-of-sight (LOS) unit vector in the FP coordinate system. The LOS unit
vector relative to the FP-xyz frame is

LOS = 1L, + 1Ly, + 1,L, (31)

where L, = cosesina, L, =sine and L, = cosecos .

Appendix B Conversion of LOS in FP coor-
dinate system to local ENU co-
ordinate system

Next we must convert the line of sight (LOS) vector in the focal plane (FP)
coordinates to east-north-up (ENU) coordinates (centered at the camera) in
order to compare the track with GPS information. We first assume that the
frame boresight has an elevation of ep (above the horizontal), an azimuth
angle of ap (in the horizontal plane clockwise from north), and a roll angle
of pp (in the vertical plane clockwise from up). In order to transform between
FP frame coordinates and ENU coordinates we first assume that the frame
(L, 1y, 1) coincides with 1g, 1n and 1y. Using three rotations, we can
transform any FP frame of given azimuth, elevation and roll to local ENU
coordinates.

First, a rotation of 180 — ap along 1, yields an azimuth pointing of ap.
This rotation is given as

1w = 1gwcos(180 — agp) + 1ym cos(ap — 90)

= 1un(—cosap)+ Lymsinap (32)
1yr = 1w cos(90+ 180 — ap) + 1ym cos(180 — ap)

= 1ww(—sinap) + 1ym(—cosap) (33)
1y = Ay (34)

Next, a rotation of 90 — ep along 1y« tilts the frame to an elevation of ep.
This rotation is given as

i = L (35)
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ly’ = lyu
= lyu
1, = lyu

cos(90 — ep) + 1,7 cos(er)
sinep + 1,7 cosep
cos(180 — ep) + 1,4 cos(90 — ep)

= 1yn(—cosep) + 1y sinep

(36)

(37)

Finally, a rotation of pp around 1, tilts the frame to the proper roll angle.

This rotation is given as

iy =

1, =

1. cos pr + 1y sinpp

1y cos(90 4 pp) + 1y cos pp
—1ysinpp + 1yrcospp

1,

(38)

(39)
(40)

Combining these rotations together we have the transformation of the
measurements of azimuth and elevation angles within the FP frame to a
LOS unit vector in ENU coordinates. The full transformation is given as

LOS

[LE L LU]

where

Ty =

1x
= [ Ze &y x| 1y]
lz
1o
= [L Ly L, |Ty 1y,}
1
L
= [L. L, L;|T:l gﬁ
].z//
y
= [Le Ly L |TiBTi | 1gw
y I
1g
= [L. Ly L, |T5BT | 1n

1y

I
=}
&

L, L, |ThT

—sinpp cospr O

cospgp sinpp 0
0 0 1
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1 0 0
T = 0 sinep cosep (48)
0 —cosep sinep
—cosap sinap 0
T = —sinap —cosap 0 (49)
0 0 1

Appendix C Conversion of GPS coordinates
to local ENU

In order to evaluate the accuracy of tracking, GPS measurements from test
targets will be provided along with the video data from the cameras used.
In order to properly compare this data, the GPS coordinates must be trans-
formed into the same ENU coordinate system used for the measurement
conversion (ENU centered at camera). In order to convert geodetic (GPS)
measurements to ENU coordinates, we must first convert the measurments
(as well as the GPS coordinates of the origin) to earth-centered earth-fixed
(ECEF) coordinates.

For GPS coordinates of height A, latitude A, and longitude ¢, the ECEF
coordinates (z,v, ) are given by

x = (h+ N)cosAcos¢ (50)

= (h+ N)cosAsing (51)

(h+ (1 —€e*)N)sin A (52)

where N = ﬁ, e = 8.1819191 x 1072 (eccentricity term) and a =
—e“sim’

6378137 (semimajor axis of earth, in meters).
The conversion of ECEF coordinates (x,u,2) to local ENU coordinates
(e,n,u) is given by

e —sin¢ cos ¢ 0 T — %o
n|=|—cosgsinA —sinAsing cosA | - | ¥ — 1w (53)
U cosAcos¢  cosAsing  sin A 22— 2

where (2o, %0, 20) is the origin of the local ENU coordinate system in ECEF
coordinates, given by (50)—(52) with h = ho, A = Ao, & = ¢, the GPS
coordinates of the camera.
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Appendix D Comparison of track from cam-
era to GPS information

The overall procedure for comparing the track generated from the camera
measurements to the GPS information follows the flow chart provided here.
FP pixel coor- - LOS vector in L, LOS vector in
dinates FP coordinates ENU coordinates

i

Target-camera
GPS coordinates

Also, note that once the GPS coordinates of the target are converted to
ENU coordinates (with the origin centered at the camera) the distance from
camera to target is simply the magnitude of the ENU vector of the target.

Appendix E Positioning of two fixed cameras
for PCAS

In order to calculate the azimuth overlap in field of view (FOV) of two cam-
eras (assumed to have the same boresight elevation angles), their pointing
angles (p1, pe in Figure 10, assumed given in degrees) must be known. The
overlap e (in degrees) of the two cameras is

E=P1+%*<p2*%) (54)
where oy and a5 are the horizontal FOV of each camera, and py, po are their
boresight angles (measured clockwise with respect to the perpendicular on
the base L).

For two cameras separated by a distance L, the distance d in Figure 10
(the distance from the cameras to the intersection of their fields of view) is,

for € < 0.1rad~ 6° 5
d=— 55
g (55)
with € in radians.
Assuming the separation base L = 2 feet, oy = as = 45°, and the two

cameras are pointed symmetrically with respect to the perpendicular on the
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Figure 10: Two camera FOV overlap

base L, then Table 4 shows the largest possible distances d for a given FOV
overlap e.

3 " B2 d Total FOV
1°] —22° | 22° | 1146 ft 8
200 —20° | 20° | B7.3 {t 88

Table 4: FOV intersection distance for various levels of overlap, separation base L = 2
feet, FOV=45°

A minimum overlap of 2° (about 5% of each camera’s FOV) is recom-
mended to have a smooth transition of the tracks between the cameras,
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Appendix F Previous Measurement Extrac-
tors Considered

Appendix F.1 Measurement Extractor 1

The measurements are extracted from each frame of data by first calculating
the average pixel intensity over a sliding window and using it in a threshold
to declare a detection in the center of the window. Each pixel of the frame
can be divided by the appropriate average value of its neighborhood to find
pixels which stand out from their neighborhood. The neighborhood average

for pixel 2, I;, will be calculated as

Rear B (56)

=
Ll L2 ’wGWi

where I, is the intensity of pixel w, L Ls is the size of the window, and W;

is the set of pixels of the sliding window centered at pixel 2. Pixel 7 will then

be declared a detection if I
k3

T Sig (57)

where [; is the intensity of pixel 2 and 7 is the set threshold. This is Extractor

la.

The detected pixels are grouped and the centroid of each group calculated
as described is section 2.1.

This method of measurement extraction alone may result in a large num-
ber of false measurements if areas of the frame have especially low pixel
intensities. Figure 11 shows the centroid measurements from the extractor
which uses a threshold of 1.35 and Ly = Ly = 21. The large number of
measurements at the top of the frame are a result of the low pixel intensities
which can easily exceed the set threshold without being much larger than the
neighborhood average intensity. In order to avoid this behavior, the detec-
tion rule can be augmented by requiring a detected pixel to also exceed the
average pixel intensity of the entire frame. This is Extractor 1b. Figure 12
shows the centroid measurements from this updated measurement extractor.
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Figure 11: Extractor 1a with threshold of 1.35

Appendix G Previous Motion Models Con-
sidered

Appendix G.1 Wiener Process Acceleration Model

Originally, a discrete Wiener process acceleration (WPA) model [2] was used,
where the state equation is

xz(k + 1) = Fz(k) + Dv(k) (58)

30

70



-50

-100

-150

-200

-250

-300

-350

-400

-450

100

200

300

400

500 600

Figure 12: Extractor 1b with full frame average exceedance rule

where z(k) is the state at time k and »(k) is the process noise during the kth

sample (acceleration increment in this case), and
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where T is the sampling time (7' = 1/30 in our case).

The standard deviation of the measurement noise was assumed to be
0.5 pixels, while the standard deviation of the process noise (acceleration
increment in a sampling interval) was chosen to be /5 pixels/s%.

Appendix H Previous Track Initialization Schemes

Considered

Appendix H.1 Track Initialization 1

A validation gate (in pixel space), based on the assumed maximum velocity
of a target over one sampling period, was set up for each measurement loca-
tion for the potential tracks. In this case, a gate which assumed a maximum
velocity of 100 pixels in the a-direction and 50 pixels in the y-direction was
used. Tracks were confirmed and initialized when a second consecutive mea-
surement is found within the validation gate of the potential tracks. These
tracks were then added to the list of currently running tracks and any po-
tential tracks without a second measurement in their validation gates were
dropped from the list of potential tracks.

Appendix I Multiple Camera Registration

Appendix I.1 Relative Registration

In order to track targets using multiple sensors, the sensors must be properly
registered in order to combine the data. For this passive collision avoidance
system, the cameras must be registered relative to each other at a minimum,
i.e., it is only necessary to know the difference of the azimuth and elevation
angles of each camera and not the actual azimuth and elevation angles. Ab-
solute registration (section Appendix 1.2) is only necessary for evaluating the
performance of the tracker with a target of known location (e.g., one with
GPS data).

In order to estimate the difference in azimuth angles of two overlapping
cameras, the measurements of a target within the overlapping portion of the
camera frames can be used. The relation between the azimuth measurements
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of two cameras (e.g., camera A and camera B) is
ap+ ap =ag + Gy (61)

where a, is the boresight azimuth of camera x and &, is the measured az-
imuth to the target (relative to the focal plane of camera z, and available
from (27) in Appendix A). Rearranging (61) results in the difference of the
camera boresight azimuth angles (&):

& =dp — by (62)

A similar equation holds for the elevation angle.

Additionally, a possible non-zero roll angle in either camera must be taken
into account. The measured azimuth and elevation angles can be corrected
by using the transformation 73 from Appendix B. This will correct the
measured azimuth and elevation angles for the roll angle rotation of the
camera (assumed known) so that the new azimuth and elevation angles are
relative to a camera with zero roll angle.

The boresight angle difference (62) can be calculated for each measure-
ment within the overlap of the two camera and this data can be used in a LS
(least squares) estimator. The LS estimator in this case simply corresponds
to the sample mean of the calculated boresight angle differences.

Appendix 1.2 Absolute Registration

Registering one camera in relation to another will provide the difference
in azimuth and elevation angles of the boresight of each camera. Using
this information, if the pointing direction of one camera is known, then the
pointing angle of the second camera is simply the pointing angles of the first
plus the differences obtained from relative registration.

In order to determine the pointing angle of the first camera, available
GPS information for a tracked target can be used. The GPS data can be
converted to ENU coordinates by using the calculations of Appendix C with
the origin of the ENU coordinate system as the camera location. The ENU
coordinates can then be used to determine the azimuth and elevation angles
from the camera to the target. The measurements of the target in the focal
plane (in pixels) can be translated to azimuth and elevation angles, relative
to the focal plane, by using the equations of Appendix A. The boresight
azimuth angle is then

aps = agps — OFp (63)
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where agg is the boresight azimuth, agps is the azimuth obtained from the
ENU coordinates of the GPS data, and agp is the azimuth of the measure-
ment relative to the focal plane. A similar equation can be used to solve for
the elevation angle. Multiple points of GPS data can then be used in a LS
estimator to determine the estimated boresight angle of the camera.

If GPS data is available for a target in the second camera, the same equa-
tions can be used to determine the boresight angles of the second camera.
The boresight angles of the second camera can also be calculated using the
data from relative registration along with the boresight angles calculated for
the first camera. These two sets of boresight angles can then be compared.
Additionally, the GPS data for the target in the second camera can also be
compared to the angles calculated from relative registration and the bore-
sight angles of the first camera. Table 5 shows the boresight angle estimates
of Camera A calculated both directly from GPS data and also indirectly
from the relative registration of Camera A to Camera B (using the bore-
sight of Camera B calculated from GPS data). Additionally, the azimuth
and elevation angles to the target were calculated using the relative registra-
tion boresight angles, and the RMS errors were then calculated (using the
azimuth and elevation to the target calculated from the GPS data as truth).

| | Relative Registration I GPS l RMS error ]
Azimuth 38.5° 38.68° 0.808°
Elevation 19.76° 18.4° 1.578°

Table 5: Comparison of boresight calculations (for Camera A) resulting from relative
registration to those resulting from direct GPS data estimation
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The following are representative frames of the process video created by UConn. The red track
indicates that their measurement extractor has located the target aircraft and has started a
track. In Figure 59, the angular velocity (degrees/second) of tracked targets is displayed. The
GPS tracking information in on the left and on the calculated from the image is on the right.

Figure 57: Video track of Ultralight of Figure 6 of Figure 58: Video track of Ultralight of Figure 7 of
the UConn report showing no collision. the UConn report showing collision course.

Figure 59: Video track of Piper aircraft using side by side L3 cameras at Pottstown Airport (Figure
28). Left hand side in the data logger GPS track, right hand side is the calculated track

5.2 Image Differencing

While UConn focused on single frame detector, with the issue of clutter removal and S/N, using
image differencing is another approach. By differencing, clutter would be “zeroed” out because
it is static frame to frame and targets which are moving would create additional contrast against
the static background. This concept is illustrated in Figure 60, the algorithmic flow is illustrated
in Figure 62. The bird flying in from the right is not apparent in the image on the left. The
background including the ground clutter goes to zero. However, image differencing is very
susceptible to motion of the platform during collection. The image must be stabilized to be
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effective (Figure 61). Note: at this time due to the ending of the program stabilization was not
completed.

Figure 60: Example of image differencing.
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Figure 61: Example of image differencing on a moving unstablized platform.
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A
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Y Image Image
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Figure 62: Flow diagram of the image through the sensor.

6 Hardware Approach for Tier | UAV

MilSys Technologies as been in contact with a few of the mini-UAV manufacturers to discuss
our PCAS system. Our existing configuration of a multi-sensor system does not meet their

SWAP requirements. What has come out of our discussions, is that the mission profile is
different enough from the Predator class, that some compromises on performance can be made

to reduce the SWAP requirements.

1.25”

Lens & FPA

Weight
Ribbon Cable
30z
i 3600AS wilens
|t1= — 3
81 | FPGA/ 202
IMU Daughter (— y———— | DSP
FreapsP —"1—1 |y 20z
Total 70z
Figure 63: Side on diagram of the propose sensor / TP. Note the | Table 8: Estimated
weight.

dimensional scales.
As discussed in Section 1.3, the most import factor in avoiding collisions is the time to collision.

For the Predator class under most situations, it has been specified as 32 seconds [minimum].
Due to the differing mission scenarios and platform design for the mini-UAS, this time can be
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reduced to ~10 seconds. MITL time goes to 0 and the
bank angle can be significantly >18° reducing the time to W 5
~b5 seconds. Detection and tracking time remains constant :

at 2-5 seconds. At a 250knot head on closing speed, 10 &S

seconds is 1.5km minimum slant range at detection.

Microbolometer technology is more than adequate for this Optics <¢0.5"
mission. FOV 50°

The innovative approach is integrate COTS IR technology, | Pixels 160 X 120
such as the L-3 Thermal Eye 3600AS (Table 9), Xilinx Pixel Size 30pm

FPGA/DSP with an IMU currently under development at

MilSys Technologies. Figure 63 is a side on view of what | _1echnology | a-Silicon

the hardware would approximately look like. The lens and | Wavelength | 7-14um

FPA are separate from the control electronics for the Sensitivity <50mK

maximum mounting flexibility (Figure 63). Table 8 is the
estimate of the total weight ~70z (<0.5Ibs). The Scan Table 9: L-3 3600AS.

Eagle published payload is 6lbs the Silver Fox is 5Ibs. So the proposed configuration is at
~10%. With additional engineering one or two of the PCBAs could potentially be eliminated.
The major weight driver is the lens.

IMU
Daughter Board

1
Threshold 1
J |
1
Image Frame Internal Sensor Image Detector Detection 1
Processing Stabilization Air-Air Report [

3600AS i

A 4
Threshold Tracker Autonomous Auto
Avoidance Pilot
Detector Detection
Air-Ground Report

!

!

| A

| .

, Tragair DSP

Figure 64: Block diagram of how the new functions of air-ground would be implemented to
leverage the existing PCAS architecture and developments.

With only one sensor, complex image transformation will not be required by the TP, however,
the new function of air-ground will replace it. The block diagram of the information is more
complex with the addition of the air-ground detector (Figure 64).

The lens currently offered by L-3 on the 3600AS has a FOV of 53° X 37°. Ideally for a forward
looking only EO/IR SAA system, a horizontal FOV of 90°-120° would be optimal. However,
microbolometers need a low F/# lens, this drives weight up. An innovative aspect of this
proposal is a contrarian approach to lens design. Most lenses are designed for imaging. A
trade study will be performed looking at several alternative approaches: For example, modified
off the shelf single element (Figure 65) similar to the Temmek Optics IRViper. Note that the
weight is almost 4X that of the proposed camera. LWIR transmitting plastics are available
(Figure 68). Designs will be reviewed that would be a combination of aspheres, fresnel lenses
(Figure 67), and/or diffractive lenses molded out of plastic or chalcogenide glass. A final design
possibility is a complex anamorphic wide angle view converter (Figure 66). The optical system
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will have a predetermined optical power in the horizontal axis different from the vertical axis.
Typically, a pair of prisms is used to form an anamorphic system. For this system, the prism

Figure 65: Temmek Optics — IRViper Figure 66: Schematic of a wide angle FOV
Lens, F/# 0.8, FOV ~80° X 60°, Weight — converter.
26og.XXXiii

100
80
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\
a1 |

Transmittance (%)

Bl 6 8 10 12 14 16
Wavelength (pm)

Figure 67: Schematic of a Fresnel Figure 68: Transmission spectrum of Fresnel

lens. ™" Technologies POLY IR® 2 IR plastic.™"
pair will be incorporated into a two or three element toroidal lens system to change the field of
view from a 4x3 format for the microbolometer sensor to a different field of view format. That is,
to use all of the pixels most efficiently for a 4x3 image format the corresponding field of view
would be 40deg. x 30 deg. As an example, to change to a field of view to 60 deg. or 120 x 30
deg., the toroidal lenses would need to compress the horizontal axis by a factor of 1.5 for the
same sensor. The resultant image will have an image which is 2.25 to 4.5X times brighter in the
vertical FOV than the horizontal FOV. The overall tradeoffs for the entire system will be the
lowest f/number that can be achieved while holding the distortion and the allowable vignetting at
the edges of the field to a minimum, while optimizing the lens system for weight, cost and
volume.

7 Extension of the Technological Approach to solve the full CA
problem
7.1 Introduction

As defined by the JIPT** in their recently published draft UAS requirements document, a sense
and avoid (SAA) system encompass the following functions: air-to-air, air-to-ground, ground-to-
ground, ground-to-air, and man made hazards (Table 10). Part of the mission planning is an
environmental forecast encompassing both atmospheric phenomena and manmade hazards
(i.e. smoke). However, this forecast is for the macro airspace and may not necessarily be
accurate for the localized mission airspace. As long as the UAV remains within the line of sight
of the warfighter, it has a SAA system. As soon as the UAVs fly out of the line of sight on the
battle field, risks to the mission increase. Adding the capability to sense the environment would
enhance the utility of UAVs, by allowing more autonomous operation, provide localized
forecasting for battlefield management, and provide real-time feedback to the onboard ISR
sensor suit to maintain probability of detection, contrast level, etc. This capability would reduce
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the workload of the warfighter, increase mission success rate, and expand mission
opportunities.

To address these needs, various sensors concepts based on the microbolometer were
developed. The ability to differentially sense temperature, passive ranging, IR spectrum of
clouds and polarization were reviewed for their applicability to potentially solve these issues as
well as the technological feasibility.

LR
gh . - aft Operational Requireme = ationale / Am plificatio =

1.4 UAS Operations - Collision Avoidance
All Phases 14 The UAS shall be capable of avoiding hazards. Overarching Hazard Avoidance requirement.
The UAS initiates an avoidance maneuver base
All Phases 141 The UAS shall be capable of avoiding collision hazards. collision avoidance system determination of a
potential hazard.
All Ground 1411 While on the ground, the UAS shall be capable of avoiding The requirement is to avoid becoming a runw ay incursion, as in
o airborne hazards (Ground-to-Air). clearing final before taking the active runw ay.
During taxi operations in the airfield environment, the UAS must
All Ground 1412 While on the ground, the UAS shall be capable of avoiding be able to avoid fixed obstacles, other ground aircraft, as well as Fixed obstacles 2015
ground hazards (Ground-to-Ground). ground support equipment. During takeoff, the UAS shall be

Table 10: JIPT SAA requirements.

7.2 Cloud Detection via Infrared Imaging (Background)

Clouds can be detected on an airborne platform with LWIR infrared imaging owing to the high
radiometric contrast between the clear-sky emission and the cloud emission™*"'. The Optical
Remote Sensors Laboratory (ORSL) at Montana State University, under the direction of Dr.
Joseph Shaw, has developed instruments and algorithms for detecting clouds, measuring cloud
statistics, and characterizing cloud type using ground-based, uncooled microbolometer thermal
infrared cameras™"';*"" **!! _These techniques were optimized for vertically viewing ground-
based infrared imagers, could be modified to operate in an airborne environment for detecting
clouds at angles other than vertical.

Figure 69 shows the down-welling atmospheric spectral radiance calculated for the 1976 U.S.
Standard Atmosphere, plotted versus wavelength for a wavelength range of 5-18 pum. This
figure illustrates the atmospheric emission spectrum that would be seen by a ground-based,
upward-viewing infrared sensor. The bottom three curves are for a clear sky with water vapor
contents that increase upward from the bottom curve: 0.1x, 1x, and 2% the normal water vapor
content. The top curve is for a cloudy sky with mid-level altostratus clouds. Figure 70 is the
vertical-path atmospheric transmittance plotted versus wavelength for the 1976 U.S. Standard
Atmosphere model, with 1x water vapor (top) and 2x water vapor (bottom). These figures show
that the atmosphere exhibits high transmittance where there is low emission, and vice versa.
This is the result of emission arising proportional to absorption.

Examining Figure 69 and Figure 70 within the spectral bandwidth of most LWIR cameras (~8—
14 pum) reveals several important points about cloud detection with IR cameras: 1) the

81



atmosphere has relatively high transmittance, especially with low water vapor content); 2) Many
clouds are quite bright relative to the clear-sky radiance; and 3) variations in atmospheric water
vapor can be interpreted as thin clouds unless the intervening atmospheric emission is
compensated for carefully. The difficulty of distinguishing between thin cirrus clouds and water
vapor variations is further illustrated by Figure 71, which plots down-welling atmospheric
emission versus wavelength (similar to Figure 69) for a clear sky, a very thin cirrus cloud, an
altostratus cloud, and a cumulus cloud. Comparing Figure 69 and Figure 71 shows that in this
case the thin cirrus emission is less than the radiance change that would occur with a doubling
of water vapor.

7 J ‘ |
Ly JMJM P ‘, L “
£al r R
E = ‘ “‘v
sl e TR
“5 e @ I
34» ‘;:"‘w é " ‘
] | 8
53 i = i
g, I | |
= cloud || ‘ I
@ 2 wv | i
2 =t T — T
| ; ! : : V"V 10 11 12 13 14 15
% 8 10 12 14 16 18 Wavelength (um)
Wavelength (microns)
Figure 69: Down-welling atmospheric emission Figure 70: Atmospheric transmittance for a zenith
spectrum for the Atmosphere model, shown for a path through the Standard Atmosphere. The top

clear sky with three different values of water vapor  (blue) curve 1x water vapor, and the bottom curve
content (0.1x, 1x, and 2x the standard value) and (red) is for 2x.
for altostratus clouds (top blue)

In ground-based cloud measurements for climate studies it is critical to detect even very thin
cirrus. Therefore, these situations are handled through the use of IR cameras that are calibrated
very carefully to achieve radiometric measurements with high accuracy and stability™"' " In
these situations the clear-sky emission is calculated using ancillary data that provides a
measure of the precipitable water vapor and near-surface air temperature, and this emission is
subtracted from the image to generate a “residual radiance” image. These residual radiance
images are ideally zero everywhere except where clouds exist. The magnitude of the residual
radiance is used to determine cloud type. An example of this type of data is shown in Figure 72.
In this figure the left-hand panel is the calibrated radiance sky image, the center panel is the
residual radiance image, and the right-hand panel is the cloud-detection image color coded by
cloud type (dark blue for clear, red for the radiometrically brightest clouds, and other colors for
intermediate cases).
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Atmospheric Emission with Clouds

— 1976 Standard
— Cirrus Clouds
Alto-Stratus Clouds
Cumulus Clouds
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Figure 71. Down-welling emission spectrum for
clear sky (blue curve, bottom), very thin cirrus at 9
km altitude (red curve, 2" from bottom), alto-
stratus cloud at 2.4 km (green curve, 3" from
bottom), and cumulus cloud with its base near 100
m (teal curve, top).

In the proposed technology, the emission signatures will change significantly from what is
shown in the preceding figures, primarily because of the large range of viewing angles to be
encountered. Also, we are not likely to have sufficient information available to properly estimate
the emission of the intervening atmosphere (which requires a reasonable estimate of the
atmospheric temperature and water vapor profiles, viewing angle, and range to the cloud).
Furthermore, because of size and weight constraints, the imager likely will not be deployed with
onboard calibration sources, making the direct use of previously developed algorithms
insufficient for this application. Nevertheless, the principles are the same and the need to
accurately characterize thin clouds is not a necessary component. Consequently, we propose to
develop algorithms that operate on a more relative basis, identifying clouds through the use of a
radiometric calibration that is measured in the laboratory and applied to the imager in flight.
Shaw’s group at Montana State University has recently patented algorithms that allow very
accurate calibration of infrared imagers without onboard blackbody sources, and similar
techniques will be used here.

The algorithms to be developed would will rely less on the absolute radiance (which is a
necessary component of the cloud imaging work done at Montana State University for climate
studies) and instead rely more on the relative variations of brightness seen while the air vehicle
is flying. Measurements of vehicle altitude and attitude will be used to determine the nominal
pointing angle of each pixel, and algorithms will be developed that use either look-up table or
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Figure 72. Images from the wide-angle Infrared Cloud Imager system developed at Montana State
University: (left) radiance, (center) residual radiance after removing atmospheric emission, and (right)
detected clouds classified by cloud type (from 0 = no clouds to 5 = thick clouds as described in text).
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curve-fit routines for estimating the background atmospheric
signature as a function of viewing angle. This type of approach is
not likely to offer sufficient stability and accuracy to allow reliable
detection of thin cirrus, but in this application the much more
important clouds to detect are thicker clouds that indicate the
presence of stormy weather or total obstruction of the view in a
particular direction. As shown in Figure 69, these clouds are very
easy to detect because of their large radiometric brightness relative
to the clear atmosphere.

Figure 73: LWIR image of
clouds using pbolometer.
Additional information may be available from the spectral Red circle is an aircraft.
distribution of radiance within the camera’s full bandwidth as is

being developed. As is indicated in Figure 69, there is a distinctly different slope of radiance
versus wavelength for clear-sky emission and cloud emission. Satellite imager algorithms
sometimes rely on this fact to detect clouds through a “split-window” technique or similar

XXXIX

approach relying often on ratios of the radiance detected at two different wavelengths

7.3 LWIR Multispectral Sensor

The literature in the atmospheric science journals is limited. Clouds can be detected on an
airborne platform with LWIR infrared imaging owing to the high radiometric contrast between the
clear-sky emission and the cloud emission™"'. The Optical Remote Sensors Laboratory (ORSL)
at Montana State University, under the direction of Dr. Joseph Shaw, has developed
instruments and algorithms for detecting meteorological phenomena (i.e. clouds, measuring
cloud statistics, and characterizing cloud type) using ground-based, uncooled hyperspectral
microbolometer based systems** " Another recent paper by Tamachi*" et al. evaluated the
potential of a ground-based IR camera (FLIR Systems, Inc.) to map cloud base temperatures
around supercell storms. This study included a nice summary of the difficulties in acquiring
accurate measurements from the ground because of IR sources from water vapor, aerosols,
and dust within the atmospheric boundary layer. For a UAV flying above the turbid boundary
layer, improved IR measurements could be obtained, free from the artifacts described for
ground-based imagers as described by Tamachi et al.

What has been investigated, is the possibility of combining a SAA system that is capable of
providing both an environmental sensing and air-air collision avoidance capability. At the heart
of the MilSys Technologies PCAS are microbolometers which are low cost SWAP efficient LWIR
sensors. As can be seen in Figure 73-Figure 77, both clouds and an aircraft are visible in the
images.

Figure 74: Image Figure 75: Image Figure 76: Cloud Figure 77: Same day
before rain. during rain. formations. as Figure 76
Microbolometers are monochromatic detectors so that the radiant extent of an object is reduced
to intensity. Therefore, a hot and distant object could have the same intensity as a close and
cool object. The larger the radiance differential is between meteorological phenomena and the
background, the greater the probability that this phenomenon is a hazard and should be
avoided. Dr. Shaw has developed algorithms that can be used to detect, track, and threshold
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Figure 81. An example of a fabricated guided-mode resonance element with comparison between
experiment and theory for a double-layer device (a). The parameters used for the theoretical curve
fit are close to the nominal values; they are cover refractive index nc=1.0, n1=1.454 (Si02),
n2=1.975 (HfO2), substrate index ns=1.454, d1=135 nm, fill factor (fraction of period occupied by
the higher-index medium) F=0.58, d2=208 nm, period FA=446 nm, and angle of incidence 6=0° (b).
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A scanning electron micrograph (SEM) and a schematic of the device are shown (c) !

meteorological phenomena. Other researchers have developed algorithms to autonomously
avoid and plan a path around them™. However, the lack of discrimination and ranging for
intensity only sensing, makes path planning and avoidance more difficult. Even with these
limitations, this system concept will work and can be integrated with the current development of
our PCAS.

The innovative technology is to create a multispectral microbolometer. This will allow the
discrimination of meteorological phenomena by allowing its radiant extent to be measured.
These measurements will be used in three ways (3): as raw wavelength data, converted to
differential temperature and/or range. The result will be to reduce false positives, improve path
planning and avoidance, and the detection and identification of meteorological phenomena etc.
This will be accomplished by developing and integrating three (3) technologies; guided mode
resonate (GMR) filters, microbolometers, and a moving FPA.

Guided-mode resonance (GMR) filters consist of fine spatial patterns arranged to control the
propagation of light (Figure 81). Lithographic patterning of dielectric surfaces, layers, or volume
regions yields low-loss structures that affect the spatial distribution, spectral content, energy
content, polarization state, and propagation direction of an optical wave. GMR filters can exhibit
a filter function that exceeds the performance found with 50 to 100 layer thin-film filters. A
significant body of published work has focused on narrow-line GMR filters which have been
demonstrated both theoretically and experimentally*"™*"". These filters require tight fabrication
tolerances. The key insight of the proposed technology is to use GMR filters in a contrarian
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Figure 78: Figure 79: Schematic of a GMR  Figure 80: SEM of a wire grid
Representation of membrane (purple) above a pixel polarizer produced by L-3.
different filters. (light blue).
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approach. That is as a broadband filter (1-3um bandwidth) with loose fabrication tolerances. By
slightly changing the structure without changing the material thickness, the spectral selectivity
properties can be modified. A multispectral sensor can then be constructed out of several
different GMR designs with a minimum of fabrication steps (Figure 78).

The temperature range most commonly be encountered by the multispectral microbolometer will
be 0-50°C which has a peak blackbody emission in the 8-12um range (LWIR) and which
corresponds with the peak sensitivity of a microbolometer. By designing GMR filters that are
spaced across the LWIR (e.g. 8-9um, 9-10pm, 10-11pm, 11-12um etc.) the radiant extent of
meteorological phenomena can be measured. By integrating the GMRs into the pixels of the
microbolometer each pixel is now wavelength sensitive and permanently co-registered (Figure
78). This is analogous to the Bayer pattern used in visible CCD and CMOS cameras.

Microbolometers are thermal devices and their sensitivity and responsivity are directly related to
their thermal mass. The construction of the GMRs on the surface of the microbolometer would
drastically change their thermal mass requiring a substantial redesign of the entire
microbolometer. Independently and concurrently, MilSys Technologies, Dr. Magnusson and L-3
were working on the concept of building membranes above the surface of materials for the
purpose of creating highly integrated optical structures. L-3 has developed the design, process,
and integration technology and lithography to construct Aluminum membranes above their
pixels (Figure 79 & Figure 80). These membranes are currently 0.25um thick wire grid
polarizers ~1um above the surface. This technology will need to be extended to the design
parameters of the GMR filters. Current estimates are that the material will be Silicon *1um thick
~3um above the surface.

Bearing Plate

1
GCoR->GHB-GC g ‘ S

Based on a free-floating sensor design, PENTAX SR is superior to other sensor-moving systems because it uses no
guide rails, allowing the sensor to oscillate in three divections—horizontally, vertically, and 1l

Figure 82: Example of the movement of Figure 83: Pentax

a FPA to produce “multispectral image

of an IFOV of the FOV. Each arrow (—)

represent the physical movement of the

FPA in time.
Many consumer based camera companies have developed technologies to remove hand and
vehicle vibrations during an image capture. They go by the trade names Anti-Shake™, Vibration
Reduction™ etc., and have been in wide scale production for approximately 5yrs. Camera
motion is detected via MEMs based gyroscopes and compensated for by mechanically moving
either the lens™™ or the sensor'" (Figure 83) These types of inertial sensors, mechanical
mechanisms, and feedback controllers are routinely incorporated into D-SLR cameras costing
<$400. The mechanical moving mechanism is usually a piezo-electric or magnetic coil similar
to the driving mechanisms in hard disk drives or zoom lenses on cell phones (Squiggle ™)".

A moving FPA would use this technology in reverse. Instead of removing vibrations, the FPA
would be translated around the image plane (Figure 82). This motion would create a
multispectral image where each instantaneous field of view (IFOV) would be sampled with
several different GMR filters at the frame rate of the camera. The speed of these driving
mechanisms is better than 5mm/s (.i.e. 5bms to move 25um and accurate (<1pm).

86



7.4 LWIR Temperature Sensor and Passive Ranging

At a basic level, all radiometric temperature sensors are single point measurements. This is
adequate when atmospheric absorption can be negated. However at a significant range, such
as for this program, this methodology is inadequate. To use radiometry for temperature
measurement, multiple data points (i.e. two(2) or more data points at differing wavelength
bands) are required. Significant work has been completed, in multiband systems in the MWIR
and LWIR"™. However, the prior development work has been focused on missiles and other
objects which have significantly higher radiance in the MWIR than meteorological phenomena
(clouds and aerosols) and these systems are both SWAP and cost prohibitive for UAV use.
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LHO”m Figure 84: Blackbody curve for 25-100°C (300-

——=kT 380K). The blue box is the 8-10um waveband,

Lio-12um yellow is 10-12um. The ratio between the total
Equation 3: The ratio between two(2) integrated radiance in each waveband indicates

radiances of a blackbody is a constant  the temperature (Equation 3).
which varies as a function of
temperature (T).

Radiometrically, the range to an object, in the IR, can be determined if three(3) variables are
known; absorption of the atmosphere, background temperature, and object temperature
(Equation 1). In general, only the local background temperature is known to any precision, the
atmosphere can be estimated using a priori information, and the object temperature is unknown.
To use radiometry to determine the object’s temperature (T), a minimum of two(2) radiances (L)
at differing wavelength bands are required (Figure 84 & Equation 3).

These data points are collected empirically by the spectrally sensitive

sensor. By calibrating it, a lookup table can be competed to relate the

ratio of the radiances to the temperature (T) via Plank’s Blackbody

equation.

To accomplish this task, the multispectral microbolometer would be

constructed with side-by-side GMR filters in the 8-10um and 10-12pm

(Equation 4). The FPA would be floated and translated back and Figure 85: Data

forth as discussed, collecting the multiband radiometric data for each collected of an aircraft

IFOV (Figure 18). Object temperature ( L,y ) would then be derived with a COTS
microbolometer.
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from this data (Figure 84 & Equation 3). Additionally, if the object is an aircraft and it is being
tracked, the area around the aircraft could be mapped and knowing the background
temperature and maximum range of the sensor, the absorption of the atmosphere can be
approximated (Equation 1). This approximation will be more timely and accurate since it would
be based on current data instead of the a priori data provided as part of the mission plan.

7.5 Autonomous Avoidance

Given a set of target tracks, the autonomous avoidance algorithms are responsible for
separation assurance and collision avoidance. The avoidance algorithm depends in part on
available measurements: if range to the target is available (e.g. through IR passive ranging,
radar, ADS-B or TCAS) then it may be possible to employ more complex algorithms which seek
to minimize deviation from the nominal track while maintaining separation. In this case trajectory
optimization methods such as receding horizon control (RHC) can be applied. RHC has been
used in various UAV planning scenarios, and recent work by Frew et al." was concerned with
adaptively varying the planning horizon based on the dynamics of the environment.

If range is not available then the avoidance algorithm must control the aircraft to maintain non-
zero bearing rate to targets (as discussed above). One approach is based on potential field
methods for collision avoidance. This method was introduced by Khatib"' and has been used in
simulation and on hardware for obstacle avoidance using vision and inertial measurements as

Ivii, lviii

the sole sensors

"' While potential field approaches can become trapped in local minima, this

is generally restricted to cases where there are many obstacles or narrow passageways: this is
unlikely to occur in the 3D environment of air vehicles. A closely related approach based on
stream functions has been shown to produce smoother trajectories, and this may be more
suitable for the current application. Potential field and stream function approaches have the
advantage of computational simplicity, and thus will work in real time.

7.5.1 Autonomous avoidance Algorithms

Eventhou the BAA was focused on man in the loop CA system some time was invested in
reviewing the development of autonomous concepts and algorithms and reaching out to the
community on potential collaborations. Most UAS manufacturers and their customers are
interested in a man-in-the-loop system for controlled airspace, but once the UAS is en route or
on station in uncontrolled airspace where the expectation that >99.99% of the time the airspace

is empty autonomous avoidance algorithms could
control or take on an enhanced burden for de-
confliction. Under these conditions CA is similar to
trajectory optimization. Dr. Jack Langelaan
@Penn State reviewed the literature and wrote a
short proposal on the art of the possible.

Trajectory optimization for UAVs is an active area
of research. Typical applications include minimal
altitude trajectories for nap of the earth flight™,
flight in urban environments™,”, ground vehicle
tracking™', road following™", target tracking and
state estimation™, search™, and more recently

Ixvi

chemical plume tracking™.

Collision avoidance trajectories are only required if
nominal trajectories have failed (i.e. there is a loss
of separation due to unforeseen events or
unmodeled terrain). Hence very rapid response is
required to place the aircraft in a safe state and the
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Figure 86: Schematic representation of
the “safety” bubble.

“bubble”
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response must be computed in real time. At the same time the computational capability on
board a mini UAV is likely to be quite limited, hence very simple algorithms are required.

One of the simplest algorithms for obstacle avoidance is the potential field approach, introduced
by Khatib™". A potential field is computed based on obstacle position and size, and the vehicle
is commanded to steer in the direction of the local gradient. This approach has been used for
simulations of UAV navigation in obstacle strewn environments with vision and inertial
measurements as the sole sensors"". Potential field approaches are computationally very
simple to implement, but can become trapped in local minima under some conditions. However,
the likelihood of these conditions occurring in a 3D environment is unlikely. In addition to
obstacles, other constraints (such as altitude limitations or no-fly zones) can also be
incorporated into the potential field. The aircraft’'s goal position (or desired track) can be
represented as a “sink” in the potential field.

Figure 86 shows a modification which represents the potential field as a “safety bubble” around
the vehicle. Any obstacle which enters the safety bubble causes a perturbation in the trajectory
proportional to the size of the obstacle and the degree of bubble penetration. The size and
“springiness” of the safety bubble depends on vehicle performance parameters (e.g. maximum
turn rate) and mission parameters, and these will be determined as part of this work.

8 Conclusion

MilSys has demonstrated the feasibility of using SWAP efficient LWIR microbolometers as
outlined in the Priest report circa 1998 as a solution to the collision avoidance problems for
UASs . It has accomplished this by, modeling the response, collecting data and leveraging and
developing detection and tracking algorithms that could be implemented into future systems.
Design proposals were completed that showed the feasibility of extending the concept up to
larger aircraft and down the smaller Tier | type UASs. To solve the entire collision avoidance
problem, as discussed by the JIPT, technology was proposed, that would create an integrated
color FPA that could determine range, weather, and still perform the collision avoidance
function.
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